Artigo Revisado por pares

Die Rolle der Hydrothermalsynthese in der präparativen Chemie

1985; Wiley; Volume: 97; Issue: 12 Linguagem: Alemão

10.1002/ange.19850971205

ISSN

1521-3757

Autores

A. Rabenau,

Tópico(s)

Zeolite Catalysis and Synthesis

Resumo

Angewandte ChemieVolume 97, Issue 12 p. 1017-1032 Aufsatz Die Rolle der Hydrothermalsynthese in der präparativen Chemie Prof. Dr. Albrecht Rabenau, Prof. Dr. Albrecht Rabenau Max-Planck-Institut für Festkörperforschung Heisenbergstraße 1, D-7000 Stuttgart 80Search for more papers by this author Prof. Dr. Albrecht Rabenau, Prof. Dr. Albrecht Rabenau Max-Planck-Institut für Festkörperforschung Heisenbergstraße 1, D-7000 Stuttgart 80Search for more papers by this author First published: Dezember 1985 https://doi.org/10.1002/ange.19850971205Citations: 90AboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Unter Hydrothermalsynthesen versteht man heute heterogene Reaktionen in wäßrigem Medium oberhalb 100°C und 1 bar. Die früher übliche Unterscheidung zwischen hydrothermalen und pneumatolytischen Bedingungen (unterhalb bzw. oberhalb des kritischen Punktes) wird nicht mehr gemacht, da beim überschreiten kritischer Punkte keine Diskontinuitäten beobachtet werden. Unter hydrothermalen Bedingungen gehen sonst schwerlösliche Stoffe als Komplexe in Lösung, an deren Bildung Wasser selbst oder gut lösliche "Mineralisatoren"︁ beteiligt sein können. Dabei gelten die Gesetzmäßigkeiten chemischer Transportreaktionen, als deren Spezialfall die Hydrothermalsynthese angesehen werden kann. In den letzten Dekaden hat die Methode in den Geowissenschaften – in denen sie auch historisch angesiedelt ist – starke Impulse erfahren, deren übertragung auf die präparative Festkörperchemie diskutiert wird. References 1 H. Schäfer: Chemische Transportreaktionen, Verlag Chemie, Weinheim 1962; Google Scholar Chemical Transport Reactions, Academic Press, New York 1964. Google Scholar 2 R. Bachmann, H. Kohler, H. Schulz, H. P. Weber, V. Kupcik, M. Wendschuh-Josties, A. Wolf, R. Wulf, Angew. Chem. 95 (1983) 1013; 10.1002/ange.19830951219 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 22 (1983) 1011. 10.1002/anie.198310111 Web of Science®Google Scholar 3 H. Y. Chen, D. M. Hiller, J. E. Hudson, C. J. A. Westenbroek, IEEE Trans. Magn. 20 (1984) 24. 10.1109/TMAG.1984.1063008 Web of Science®Google Scholar 4(a) H. Rau, A. Rabenau, Solid State Commun. 5 (1967) 331; 10.1016/0038-1098(67)90767-3 CASWeb of Science®Google Scholar(b) V. A. Nikitenko, V. I. Popolitov, S. G. Stoyukhin, A. Ya. Shapiro, A. N. Lobachev, A. I. Tereshchenko, V. G. Kolotilova, Sov. Tech. Phys. Lett. Engl. Transl. 5 (1979) 493. Google Scholar 5 R. Kniep, A. Rabenau, Top. Curr. Chem. 111 (1983) 145. 10.1007/3-540-12065-3_3 CASWeb of Science®Google Scholar 6(a) R. Roy, O. F. Tuttle, Phys. Chem. Earth 1 (1956) 138; 10.1016/0079-1946(56)90008-8 Google Scholar(b) A. J. Ellis, W. S. Fyfe, Rev. Pure Appl. Chem. 7 (1957) 261; CASGoogle Scholar(c) R. A. Laudise, J. W. Nielsen: Solid State Phys. 12 (1961) 149; 10.1016/S0081-1947(08)60654-2 CASWeb of Science®Google Scholar(d) R. A. Laudise, Prog. Inorg. Chem. 3 (1962) 1; 10.1002/9780470166048.ch1 CASGoogle Scholar(e) A. A. Ballman, R. A. Laudise in J. J. Gilman (Hrsg.): The Art and Science of Growing Crystals, Wiley, New York 1963, S. 231; Google Scholar(f) J. W. Moody, R. C. Himes, Battelle Tech. Rev. 1965, Nr. 5, 3; Google Scholar(g) R. Roy, W. B. White, J. Cryst. Growth 3, 4 (1968) 33; 10.1016/0022-0248(68)90099-7 Google Scholar(h) A. N. Christensen, Rev. Chim. Miner. 6 (1969) 1187; Web of Science®Google Scholar(i) R. A. Laudise, E. D. Kolb, Endeavour 28 (1969) 114; CASWeb of Science®Google Scholar(j) A. Rabenau, H. Rau, Philips Tech. Rundsch. 30 (1969/70) 53; Google Scholar Philips Tech. Rev. 30 (1969) 89; CASWeb of Science®Google Scholar(k) R. A. Laudise: The Growth of Single Crystals, Prentice-Hall, Englewood Cliffs 1970, S. 274; Google Scholar(l) C. J. M. Rooymans in P. Hagenmuller (Hrsg.): Preparative Methods in Solid State Chemistry, Academic Press, New York 1972, S. 71; 10.1016/B978-0-12-313350-2.50008-5 Google Scholar(m) V. A. Kuznetsov, A. N. Lobachev, Sov. Phys. Crystallogr. 17 (1973) 775; Google Scholar(n) R. A. Laudise in P. Hartmann (Hrsg.): Crystal Growth: An Introduction, North-Holland, Amsterdam 1973, S. 162; Google Scholar(o) L. M. Demianets, A. N. Lobachev in A. N. Lobachev (Hrsg.): Crystallization Process under Hydrothermal Conditions, Consultants Bureau, New York 1973, S. 1; 10.1007/978-1-4684-7523-4_1 Google Scholar(p) K. T. Wilke: Kristallzüchtung, VEB Deutscher Verlag, Berlin 1973; Google Scholar(q) V. P. Butuzov, A. N. Lobachev, Growth Cryst. USSR 9 (1975) 11; Google Scholar(r) G. Strübel, Z. Dtsch. Gemmol. Ges. 24 (1975) 138; Google Scholar(s) L. N. Demianets, A. N. Lobachev, Krist. Tech. 14 (1979) 509; 10.1002/crat.19790140503 Web of Science®Google Scholar(t) Curr. Top. Mater. Sci. 7 (1981) 483; Google Scholar(u) A. Rabenau, Phys. Chem. Earth 13/14 (1981) 361. 10.1016/0079-1946(81)90018-5 Web of Science®Google Scholar 7 K. F. E. Schafhäutl, Gelehrte Anzeigen Bayer. Akad. 20 (1845) 557, 561, 569, 593. Google Scholar 8(a) R. Bunsen, Poggendorf's Ann. 46 (1839) 97; 10.1002/andp.18391220107 Google Scholar(b) Justus Liebigs Ann. Chem. 65 (1848) 70. 10.1002/jlac.18480650107 Google Scholar 9 H. de Sénarmont, Ann. Chim. Phys. [3] 32 (1851) 129. Google Scholar 10 M. Daubrée, Ann. Mines 12 (1857) 289. Google Scholar 11 G. W. Morey, P. Niggli, J. Am. Chem. Soc. 35 (1913) 1086; 10.1021/ja02198a600 CASWeb of Science®Google Scholar P. Niggli, G. W. Morey, Z. Anorg. Chem. 83 (1913) 369. 10.1002/zaac.19130830130 Web of Science®Google Scholar 12 E. T. Allen, J. L. Crenshaw, J. Johnston, Am. J. Sci. 4. 33 (1912) 167. Google Scholar 13 H. Rau, A. Rabenau, Mater. Res. Bull. 2 (1967) 609. 10.1016/0025-5408(67)90120-1 CASWeb of Science®Google Scholar 14 G. W. Morey, J. Am. Chem. Soc. 36 (1914) 215; 10.1021/ja02179a002 CASWeb of Science®Google Scholar Z. Anorg. Chem. 86 (1914) 305. 10.1002/zaac.19140860121 Web of Science®Google Scholar 15 K. von Chrustschoff, Am. Chem. 3 (1873) 281. Google Scholar 16 O. F. Tuttle, Geol. Soc. Am. Bull. 60 (1949) 1727. 10.1130/0016-7606(1949)60[1727:TPVFSS]2.0.CO;2 Web of Science®Google Scholar 17 G. Spezia, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. 40 (1905) 254. Google Scholar 18(a) C. S. Hitchen, Bull. Inst. Min. Metall. 364 (1934) 1; Google Scholar(b) G. W. Morey, E. Ingerson, Econ. Geol. 32 (1937) 607. 10.2113/gsecongeo.32.5_Suppl.607 CASGoogle Scholar 19(a) E. U. Franck, Angew. Chem. 73 (1961) 309; 10.1002/ange.19610731003 CASWeb of Science®Google Scholar(b) Ber. Dtsch. Keram. Ges. 41 (1964) 43; Google Scholar(c) K. Tödheide, Ber. Bunsenges. Phys. Chem. 70 (1966) 1022; 10.1002/bbpc.19660700917 Web of Science®Google Scholar(d) E. U. Franck, Pure Appl. Chem. 24 (1970) 13; 10.1351/pac197024010013 CASGoogle Scholar(e) K. Tödheide in F. Franks (Hrsg.): Water, a Comprehensive Treatise, Vol. 1, Plenum, New York 1972, S. 463; Google Scholar(f) E. U. Franck, Int. Corros. Conf. Ser. 1973, 109; Google Scholar(g) E. Schlegel, Silikattechnik 31 (1980) 323, 324; CASGoogle Scholar(h) E. U. Franck, Phys. Chem. Earth 13/14 (1981) 65; 10.1016/0079-1946(81)90006-9 Web of Science®Google Scholar(i) S. D. Haman, Phys. Chem. Earth 13/14 (1981) 89; 10.1016/0079-1946(81)90007-0 Web of Science®Google Scholar(j) K. Tödheide, Ber. Bunsenges. Phys. Chem. 86 (1982) 1005. 10.1002/bbpc.198200007 Web of Science®Google Scholar 20 E. U. Franck in H. Kelm (Hrsg.): High Pressure Chemistry, Reidel, Dordrecht 1978, S. 221. 10.1007/978-94-009-9888-9_9 Google Scholar 21 H. C. Helgeson, Phys. Chem. Earth 13/14 (1981) 133. Google Scholar 22 H. P. Eugster, Phys. Chem. Earth 13/14 (1981) 461. 10.1016/0079-1946(81)90023-9 Web of Science®Google Scholar 23(a) G. Strübel, Z. Dtsch. Gemmol. Ges. 21 (1972) 58; Google Scholar(b) K. B. Krauskopf: Introduction to Geochemistry, 2. Aufl., McGraw-Hill, Kogakusha Ltd., Tokyo 1979. Google Scholar 24 W. L. Marshall, E. V. Jones, J. Inorg. Nucl. Chem. 36 (1974) 2313. 10.1016/0022-1902(74)80275-7 CASWeb of Science®Google Scholar 25 T. M. Seward, Phys. Chem. Earth 13/14 (1981) 113. 10.1016/0079-1946(81)90008-2 Web of Science®Google Scholar 26(a) J. W. Cobble, Rapp. Tech. Cent. Belge Etude Corros. 142 (1982) 119; CASGoogle Scholar(b) I. L. Khodakovsky in S. Somiya (Hrsg.): Proc. 1st Int. Symp. Hydrotherm. React. 1982, Gakujutsu Bunken Fukyu-kai 1983, S. 76. Google Scholar 27(a) W. Eitel, Fortschr. Mineral. 10 (1925) 157; CASGoogle Scholar(b) J. Koenigsberger, Fortschr. Mineral. 11 (1927) 617. Google Scholar 28 G. W. Morey, J. Am. Ceram. Soc. 36 (1953) 279. 10.1111/j.1151-2916.1953.tb12883.x CASWeb of Science®Google Scholar 29(a) G. W. Morey, J. Eng. Club Philadelphia 35 (1919) 509; CASGoogle Scholar(b) G. W. Morey, A. Ingerson, Am. Mineral. 22 (1937) 1121. CASWeb of Science®Google Scholar 30(a) J. Liebertz, Chem. Ing. Tech. 39 (1967) 1294; 10.1002/cite.330392208 CASWeb of Science®Google Scholar(b) R. Mosebach, Chem. Ztg. 79 (1955) 583; CASGoogle Scholar(c) Sprechsaal Keram. Glas Email silik. 90 (1957) 246, 297, 324; Web of Science®Google Scholar(d) W. Jahn, E. Kordes, Chem. Erde 16 (1953) 75. CASGoogle Scholar 31 B. N. Litvin, D. A. Tules in A. N. Lobachev: Hydrothermal Synthesis of Crystals, Consultants Bureau, New York 1971, S. 139. Google Scholar 32 V. A. Kuznetsov, A. A. Shternberg, Sov. Phys. Crystallogr. 12 (1967) 280. Web of Science®Google Scholar 33 J. S. Huebner in G. C. Ulmer (Hrsg.): Research Techniques for High Pressure and High Temperature, Springer, Berlin 1971, S. 123. 10.1007/978-3-642-88097-1_5 Google Scholar 34(a) TEM-Pres Division LECO Corporation, P.O. Box 390, Bellafonte, PA 16823 (USA); Google Scholar(b) D. W. Williams, Am. Mineral. 53 (1968) 1765. Web of Science®Google Scholar 35(a) F. H. Smyth, L. H. Adams, J. Am. Chem. Soc. 45 (1923) 1167; 10.1021/ja01658a009 CASWeb of Science®Google Scholar(b) R. W. Goranson, Am. J. Sci. 22 (1931) 481; 10.2475/ajs.s5-22.132.481 CASWeb of Science®Google Scholar(c) J. R. Holloway in G. C. Ulmer (Hrsg.): Research Techniques for High Pressure and High Temperature, Springer, New York 1971, S. 217. 10.1007/978-3-642-88097-1_8 Google Scholar 36(a) J.-J. Capponi, Thèse Université scientifique et médicale, Grenoble 1973; Google Scholar(b) J. C. Joubert, J. Chenavas in N. B. Hannay (Hrsg.): Treatise on solid State Chemistry, Vol. 5, Plenum, New York 1975, S. 463; Google Scholar(c) E. Herdtweck, Z. Anorg. Allg. Chem. 501 (1983) 131. 10.1002/zaac.19835010615 CASWeb of Science®Google Scholar 37 N. Yu. Ikornikova, A. N. Lobachev, A. R. Vasenin, V. M. Egorov, A. V. Antoshin in A. N. Lobachev (Hrsg.): Crystallization Processes under Hydrothermal Conditions, Consultants Bureau, New York 1973, S. 241. 10.1007/978-1-4684-7523-4_15 Google Scholar 38 M. Buback, Phys. Chem. Earth 13/14 (1981) 345. 10.1016/0079-1946(81)90017-3 Web of Science®Google Scholar 39(a) J. Nassler in J. J. Lagowski (Hrsg.): The Chemistry of Non-Aqueous Solvents, Vol. 1, Academic Press, New York 1966, S. 213; Google Scholar(b) G. W. Morey: The Properties of Glass, Reinhold, New York 1954. Google Scholar 40(a) E. Schönherr, J. Cryst. Growth 57 (1982) 493; 10.1016/0022-0248(82)90064-1 Web of Science®Google Scholar(b) E. Schönherr, E. Dieguez, J. Cryst. Growth 63 (1983) 197. 10.1016/0022-0248(83)90447-5 Web of Science®Google Scholar 41(a) A. Rabenau, H. Rau, Inorg. Synth. 14 (1973) 160; 10.1002/9780470132456.ch35 CASGoogle Scholar(b) A. Rabenau in P. Hartmann (Hrsg.): Crystal Growth: An Introduction, North-Holland, Amsterdam 1973, S. 198. Google Scholar 42 R. Speed, A. Filice, Am. Mineral. 49 (1964) 1114. CASWeb of Science®Google Scholar 43 L. R. Holland, J. Cryst. Growth 66 (1984) 501. 10.1016/0022-0248(84)90148-9 CASWeb of Science®Google Scholar 44(a) Parr Instrument Company, Moline, IL 61265 (USA); Google Scholar H. Kürner, Analysentechnik, Herderstraße 2, D-8200 Rosenheim; Google Scholar(b) O. Buresch, H. G. von Schnering, Fresenius Z. Anal. Chem. 319 (1984) 418; c) Forschungsinstitut Berghof GmbH, Postfach 1523, D-7400 Tübingen 1. 10.1007/BF00466249 CASWeb of Science®Google Scholar 45 V. I. Popolitov, B. N. Litvin in A. N. Lobachev (Hrsg.): Crystallisation Processes under Hydrothermal Conditions, Consultants Bureau, New York 1973, S. 57. 10.1007/978-1-4684-7523-4_4 Google Scholar 46 V. M. Egorov, N. Yu. Ikornikova, A. N. Lobachev, J. Cryst. Growth 36 (1976) 138. 10.1016/0022-0248(76)90225-6 CASWeb of Science®Google Scholar 47(a) O. Vohler, P.-L. Reiser, R. Martina, D. Overhoff, Angew. Chem. 82 (1970) 401; 10.1002/ange.19700821102 Google Scholar Angew. Chem. Int. Ed. Engl. 9 (1970) 414; 10.1002/anie.197004141 CASWeb of Science®Google Scholar(b) B. Findeisen, Freiberg. Forschungsh. A687 (1984) 148; Google Scholar(c) K. Byrappa, B. N. Litvin, J. Mater. Sci. 18 (1983) 703. 10.1007/BF00745567 CASWeb of Science®Google Scholar 48(a) F. Ruszala, E. Kostiner, J. Cryst. Growth 26 (1974) 155; 10.1016/0022-0248(74)90219-X CASWeb of Science®Google Scholar(b) S. Komarneni, W. P. Freeborn, C. A. Smith, Am. Mineral. 64 (1979) 650. CASWeb of Science®Google Scholar 49 W. E. Seyfried, Jr., P. C. Gordon, F. W. Dickson, Am. Mineral. 64 (1979) 646. CASWeb of Science®Google Scholar 50(a) H. Rau, A. Rabenau, J. Cryst. Growth 3, 4 (1968) 417; 10.1016/0022-0248(68)90188-7 Google Scholar(b) A. Rabenau, H. Rau, Naturwissenschaften 55 (1968) 336. 10.1007/BF00600450 CASWeb of Science®Google Scholar 51(a) V. A. Kuznetsov, J. Cryst. Growth 3, 4 (1968) 405; 10.1016/0022-0248(68)90186-3 Google Scholar(b) in A. N. Lobachev (Hrsg.): Crystallization Processes under Hydrothermal Conditions, Consultants Bureau, New York 1973, S. 43. 10.1007/978-1-4684-7523-4_3 Google Scholar 52(a) A. Rabenau, High. Temp. High Pressures 6 (1974) 601; CASGoogle Scholar(b) R. Kniep, D. Mootz, A. Rabenau, Z. Anorg. Allg. Chem. 422 (1976) 17. 10.1002/zaac.19764220103 CASWeb of Science®Google Scholar 53 V. I. Popolitov, A. N. Lobachev, A.-Y. Shapiro, Rost Krist. 13 (1980) 223. CASGoogle Scholar 54 I. G. Ganeev, V. N. Rumyantsev, Sov. Phys. Crystallogr. 22 (1977) 91. Google Scholar 55 V. I. Popolitov, A. N. Lobachev, Inorg. Mater. USSR 9 (1973) 949. Google Scholar 56 J. Koenig, AFCRC-TR-57-190, Clevite Research Cener, Cleveland, OH 1957 (USA). Google Scholar 57 A. A. Shternberg, V. A. Kuznetsov, Sov. Phys. Crystallogr. 13 (1969) 647. Web of Science®Google Scholar 58 R. C. Puttbach, R. R. Monchamp, J. W. Nielsen, J. Phys. Chem. Solids 28 Suppl. 1 (1967) 569. CASGoogle Scholar 59 V. I. Popolitov, A. N. Lobachev, M. N. Tseitlin in A. N. Lobacher (Hrsg.): Crystal Growth from High-Temperature Aqueous Solutions, Nauka Press, Moskau 1977, S. 198. Google Scholar 60(a) V. I. Popolitov, G. F. Plakhov, Inorg. Mater. USSR 19 (1983) 1459; Web of Science®Google Scholar(b) J. Appl. Chem. USSR 9 (1983) 1809; Google Scholar(c) V. I. Popolitov, Y. M. Mininzon, A. N. Lobachev, Inorg. Mater. USSR 18 (1982) 955. Web of Science®Google Scholar 61(a) R. Nacken, Chem. Ztg. 74 (1950) 745; CASGoogle Scholar(b) R. Nacken, I. Franke, DBP 913649 (18. 6. 1954). Google Scholar 62 R. A. Laudise, A. A. Ballman, J. Am. Chem. Soc. 80 (1958) 2655. 10.1021/ja01544a014 CASWeb of Science®Google Scholar 63 R. Roy, S. Theokritoff, J. Cryst Growth 12 (1972) 69. 10.1016/0022-0248(72)90342-9 CASWeb of Science®Google Scholar 64 E. D. Kolb, R. A. Laudise, J. Cryst. Growth 29 (1975) 29. 10.1016/0022-0248(75)90044-5 CASWeb of Science®Google Scholar 65(a) B. Sawyer, J. Cryst. Growth 36 (1976) 345; 10.1016/0022-0248(76)90298-0 CASWeb of Science®Google Scholar(b) A. Burewicz, S. Zielinski, Acta Chim. Sci. Hung. 102 (1979) 333. CASWeb of Science®Google Scholar 66(a) H. Saito, I. Yamai, N. Kato, Yogyo Kyokaishi 78 (1968) 247; 10.2109/jcersj1950.76.876_247 Google Scholar(b) T. Oota, H. Saito, I. Yamai, J. Cryst. Growth 46 (1979) 333. 10.1016/0022-0248(79)90081-2 Web of Science®Google Scholar 67 R. Brill, I. Melczynski, Angew. Chem. 76 (1964) 52; 10.1002/ange.19640760113 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 3 (1964) 133. Web of Science®Google Scholar 68(a) S. Hirano, S. Somiya, J. Am. Ceram. Soc. 59 (1976) 534; 10.1111/j.1151-2916.1976.tb09432.x CASWeb of Science®Google Scholar(b) M. Yoshimura, S. Somiya, Am. Ceram. Soc. Bull. 59 (1980) 246; CASWeb of Science®Google Scholar(c) in A. H. Heuer, L. W. Hobbs: Advances in Ceramics, Vol. 3, American Ceramic Society, Columbus, OH 1981, S. 455; Google Scholar(d) T. Oota, Y. Yamai, H. Saito, J. Ceram. Soc. Jpn. 87 (1979) 512; 10.2109/jcersj1950.87.1010_512 CASGoogle Scholar(e) S. Hirano, S. Somiya, J. Cryst. Growth 35 (1976) 273; 10.1016/0022-0248(76)90184-6 CASWeb of Science®Google Scholar(f) S. Hirano, M. G. M. Ismail, S. Somiya, Mater. Res. Bull. 11 (1976) 1023. 10.1016/0025-5408(76)90180-X CASWeb of Science®Google Scholar 69(a) J. Liebertz, Angew. Chem. 85 (1973) 326; 10.1002/ange.19730850803 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 12 (1973) 291; 10.1002/anie.197302911 Web of Science®Google Scholar(b) J. E. Arem: Man-Made Crystals, Smithsonian Institution Press, Washington D.C. 1973; Google Scholar(c) K. Nassau, J. Nassau in H. C. Feyhardt (Hrsg.): Crystals, Growth, Properties, and Applications, Vol. 2, Springer, Berlin 1980, S. 1; Google Scholar(d) L. H. Yaverbaum: Synthetic Gems Production Techniques, Noyes Data Corporation, Park Ridge 1980. Google Scholar 70 K. Nassau, J. Cryst. Growth 35 (1976) 211. 10.1016/0022-0248(76)90172-X CASWeb of Science®Google Scholar 71 L. R. Rothrock in Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 11, 3. Aufl., Wiley, New York 1980, S. 719. Google Scholar 72(a) E. Köster, H. Motz in Ullmanns Encyklopädie der technischen Chemie, Bd. 16, 4. Aufl., Verlag Chemie, Weinheim 1978, S. 361; Google Scholar(b) R. H. Perry, A. A. Nishimura in Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 14, 3. Aufl., Wiley, New York 1981, S. 732. Google Scholar 73(a) G. Anger, H. Knopf, P. Schmidt in Ullmanns Encyklopädie der technischen Chemie, Bd. 9, 4. Aufl., Verlag Chemie, Weinheim 1975, S. 603; Google Scholar(b) W. H. Hartford in Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 6, 3. Aufl., Wiley, New York 1979, S. 82. Google Scholar 74 A. R. Corradi, S. J. Andress, J. E. French, G. Bottoni, D. Candolfo, A. Cecchetti, F. Masoli, IEEE Trans. Magn. 20 (1984) 33. 10.1109/TMAG.1984.1063007 Web of Science®Google Scholar 75 L. N. Demianets in C. J. M. Rooymans (Hrsg.): Crystals, Growth, Properties and Applications, Vol. 1, Springer, Berlin 1978, S. 97. Google Scholar 76 H. Hibst, Angew. Chem. 94 (1982) 263; 10.1002/ange.19820940404 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 21 (1982) 270. 10.1002/anie.198202701 Google Scholar 77(a) A. R. Burkin: The Chemistry of Hydrometallurgical Processes, Spon, London 1966; Google Scholar(b) T. W. Swaddle, Chem. Can. 32 (1980) 21. CASGoogle Scholar 78 R. M. Barrer: Hydrothermal Chemistry of Zeolites, Academic Press, New York 1982. Google Scholar 79(a) T. C. Waddington: Non-Aqueous Solvent Systems, Academic Press, London 1965; Google Scholar(b) J. J. Lagowski: The Chemistry of Non-Aqueous Solvents, Vol. I-VB, Academic Press, New York 1966–1972. Google Scholar 80 J. B. Hannay, J. Hogarth, Proc. R. Soc. London 30 (1880) 178. 10.1098/rspl.1879.0104 Google Scholar 81 H. S. Booth, R. M. Bidwell, Chem. Rev. 44 (1948) 477. 10.1021/cr60139a003 Web of Science®Google Scholar 82(a) B. Basavalingu, J. A. Tareen, T. R. N. Kutty in S. Somiya: Proc. 1st Int. Symp. Hydrotherm. React. 1982, Gakujutsu Bunken Fukyu-Kai, Ookayama, Meguru 1983, S. 738; Google Scholar(b) M. N. Viswanathiah, J. A. Tareen, T. R. N. Kutty in S. Somiya: Proc. 1st Int. Symp. Hydrotherm. React. 1982, Gakujutsu Bunken Fukyu-Kai, Ookayama, Meguru 1983, S. 747. Google Scholar 83(a) J. Jander in G. Jander, H. Spandau, C. C. Addison (Hrsg.): Anorganische und allgemiene Chemie in flüssigem Ammoniak, Vieweg, Braunschweig 1966; Google Scholar(b) D. Nicholls: Inorganic Chemistry in Liquid Ammonia, Elsevier, Amsterdam 1979; Google Scholar(c) G. W. Fowles, D. Nicholls, Quart. Rev. Chem. Soc. 16 (1962) 19. 10.1039/qr9621600019 CASWeb of Science®Google Scholar 84(a) R. Juza, H. Jacobs, Angew. Chem. 78 (1966) 208; 10.1002/ange.19660780309 Google Scholar Angew. Chem. Int. Ed. Engl. 5 (1966) 247; Google Scholar(b) J. Liebertz, P. Eckerlin, A. Rabenau, J. Tillack, unveröffentlicht (1962); zitiert nach [61]. Google Scholar 85 R. Juza, H. Jacobs, H. Gerke, Ber. Bunsenges. Phys. Chem. 70 (1966) 1103. 10.1002/bbpc.19660700936 CASWeb of Science®Google Scholar 86 H. Jacobs, D. Schmidt, Curr. Top. Mater. Sci. 8 (1982) 381. CASGoogle Scholar 87 J. F. Balascio, W. B. White, R. Roy, Mater. Res. Bull. 2 (1967) 913. 10.1016/0025-5408(67)90146-8 CASWeb of Science®Google Scholar 88(a) H. Jacobs, B. Harbrecht, J. Less Common Met. 85 (1982) 87; 10.1016/0022-5088(82)90061-3 CASWeb of Science®Google Scholar(b) H. Jacobs, J. Kockelkorn, J. Birkenbeul, J. Less Common Met. 87 (1982) 215; 10.1016/0022-5088(82)90089-3 CASWeb of Science®Google Scholar(c) H. Jacobs, J. Birkenbeul, J. Kockelkorn, J. Less Common Met. 97 (1984) 205; 10.1016/0022-5088(84)90024-9 CASWeb of Science®Google Scholar(d) H. Jacobs, J. Kockelkorn, J. Less Common Met. 85 (1982) 97; 10.1016/0022-5088(82)90062-5 CASWeb of Science®Google Scholar(e) H. Jacobs, J. Birkenbeul, D. Schmitz, J. Less Common Met. 85 (1982) 79; 10.1016/0022-5088(82)90060-1 CASWeb of Science®Google Scholar(f) B. Harbrecht, H. Jacobs, Z. Anorg. Allg. Chem. 500 (1983) 181; 10.1002/zaac.19835000521 CASWeb of Science®Google Scholar(g) H. Jacobs, C. Stüve, J. Less Common Met. 96 (1984) 323. 10.1016/0022-5088(84)90211-X CASWeb of Science®Google Scholar 89 P. Böttcher, U. Kretschmann, J. Les Common Met. 95 (1983) 81. 10.1016/0022-5088(83)90386-7 Web of Science®Google Scholar 90(a) J. A. Campbell, R. A. Whiteker, J. Chem. Educ. 46 (1969) 90; 10.1021/ed046p90 CASWeb of Science®Google Scholar(b) L. Sillen, J. Chem. Educ. 29 (1952) 600. 10.1021/ed029p600 CASGoogle Scholar 91 A. K. Covington, R. G. Bates, R. A. Durst, Pure Appl. Chem. 55 (1983) 1467. 10.1351/pac198355091467 CASWeb of Science®Google Scholar 92(a) P. Delahay, M. Pourbaix, P. van Rysselberghe, J. Chem. Educ. 27 (1950) 683; 10.1021/ed027p683 CASGoogle Scholar(b) H. Lux: Praktikum der quantitativen anorganischen Analyse, 6. Aufl., Bergmann, München 1970. 10.1007/978-3-642-97797-8 Google Scholar 93 M. Pourbaix: Thermodynamique des solutions aqueuses dilluées. Représentation graphique du role du pH et du potentiel, Meinema, Delft 1945. Web of Science®Google Scholar 94(a) R. M. Garrels, C. L. Christ: Solutions, Minerals and Equilibria, Harper and Row, New York 1965; Google Scholar(b) D. W. Barnum, J. Chem. Educ. 59 (1982) 809. 10.1021/ed059p809 CASWeb of Science®Google Scholar 95(a) Computer-Calculated Potential pH Diagrams to 300°C; Report 1983, EPRINP-3137; Google Scholar(b) C. M. Chen, K. Aral, G. J. Theus in [95a], Vol. 1, Executive Summary, Final Report; Google Scholar(c) in [95a], Vol. 22, Handbook of Diagrams; Google Scholar(d) C. M. Chen, K. Aral in [95a], Vol. 3, User's Guide for the Computer Program, POT-pH-TEMP. Google Scholar 96 M. Pourbaix, Rapp. Tech. Cent. Belge Etude Corros. 142 (1982) 101. CASGoogle Scholar 97 A. N. Lobachev, V. I. Popolitov, M. N. Tseitlin, High Temp. High Pressures 6 (1974) 687. CASGoogle Scholar 98 P. B. Barton, Jr., B. J. Skinner in B. L. Barnes (Hrsg.): Geochemistry of Hydrothermal Ore Deposits, 2. Aufl., Wiley, New York 1979. Google Scholar 99 N. Yu. Ikornikova in A. N. Lobachev (Hrsg.): Hydrothermal Synthesis of Crystals, Consultants Bureau, New York 1971, S. 80. Google Scholar 100 O. Glemser, Angew. Chem. 73 (1961) 785. 10.1002/ange.19610732402 CASWeb of Science®Google Scholar 101 S. Hirano, Y. Iwai, S. Somiya, S. Saito in K. Zimmerhaus, M. S. Barber (Hrsg.): High Pressure Sci. Technol. 6th AIRPAPT Conf. 1977, Plenum, New York 1979, S. 970. Google Scholar 102 M. N. Viswanathiah, J. A. K. Tareen, K. V. Krishnamurthy, J. Cryst. Growth 49 (1980) 189. 10.1016/0022-0248(80)90081-0 CASWeb of Science®Google Scholar 103(a) J. B. MacChesney, H. J. Williams, R. C. Sherwood, J. F. Potter, J. Chem. Phys. 44 (1966) 596; 10.1063/1.1726730 CASWeb of Science®Google Scholar(b) V. I. Popolitov, A. N. Lobachev, Inorg. Mater. USSR 8 (1972) 839; Google Scholar(c) A. Collomb, J. J. Capponi, M. Gondrand, J. C. Joubert, J. Solid State Chem. 23 (1978) 315; 10.1016/0022-4596(78)90079-8 CASWeb of Science®Google Scholar(d) M. McKelvy, L. Eyring, J. Cryst. Growth 62 (1983) 635; 10.1016/0022-0248(83)90409-8 CASWeb of Science®Google Scholar(e) A. N. Christensen: Studier over nogel hydrotermalt fremstillede oxider og hydroxider, Universitet Kemiske Institut, Aarhus 1967; Google Scholar(f) V. I. Popolitov, A. N. Lobachev, V. F. Peskin, Yu. M. Mininzon, Ferroelectrics 21 (1978) 421. 10.1080/00150197808237284 CASWeb of Science®Google Scholar 104(a) H. P. Eugster, J. Chem. Phys. 26 (1957) 1760; 10.1063/1.1743626 CASWeb of Science®Google Scholar(b) H. P. Eugster, D. R. Wones, J. Petrol. 3 (1962) 82; 10.1093/petrology/3.1.82 CASWeb of Science®Google Scholar(c) H. P. Eugster in D. G. Frazer (Hrsg.): Thermodynamics in Geology, Reidel, Dordrecht 1977, S. 183; 10.1007/978-94-010-1252-2_10 Google Scholar(d) H. L. Barnes, Phys. Chem. Earth 13/14 (1981) 321; 10.1016/0079-1946(81)90016-1 Web of Science®Google Scholar(e) I.-M. Chou, H. P. Eugster, P. Berens, J. H. Weare, Geochim. Cosmochim. Acta 42 (1978) 281. 10.1016/0016-7037(78)90181-3 CASWeb of Science®Google Scholar 105 I.-M. Chou, J. D. Frantz, Am. J. Sci. 277 (1977) 1067. 10.2475/ajs.277.8.1067 CASWeb of Science®Google Scholar 106(a) H. R. Shaw, Science 139 (1963) 1220; 10.1126/science.139.3560.1220 CASPubMedWeb of Science®Google Scholar(b) in P. H. Abelson (Hrsg.): Researches in Geochemistry, Vol. 2, Wiley, New York 1967, S. 521. Google Scholar 107 M. Carapezza, Geochem. Int. 6 (1969) 819. Web of Science®Google Scholar 108 H. L. Barnes in G. C. Ulmer (Hrsg.): Research Techniques for High Pressures and High Temperatures, Springer, New York 1971, S. 317. 10.1007/978-3-642-88097-1_12 Web of Science®Google Scholar 109 G. R. Kulonin in N. Ravmovesii (Hrsg.): Metody Eksperim. Issled. Gidrotermal, Novosibirsk 1979, S. 90. Google Scholar 110 J. W. Moody, R. C. Himes, Mater. Res. Bull. 2 (1969) 763. Google Scholar 111 C. C. Torardi, J. C. Calabrese, Inorg. Chem. 23 (1984) 3281. 10.1021/ic00189a002 CASWeb of Science®Google Scholar 112 A. Collomb, D. Samaras, J. L. Buevoz, J. P. Levy, J. C. Joubert, J. Mag. Mag. Mater. 40 (1983) 75. 10.1016/0304-8853(83)90012-4 CASWeb of Science®Google Scholar 113 B. N. Litvin, Inorg. Mater. USSR 20 (1984) 898. Web of Science®Google Scholar 114 J. Fenner, A. Rabenau, G. Trageser, Adv. Inorg. Chem. Radiochem. 23 (1980) 329. 10.1016/S0065-2792(08)60096-5 CASGoogle Scholar 115 B. Reuter, K. Hardel, Ber. Bunsenges. Phys. Chem. 70 (1966) 82. 10.1002/bbpc.19660700116 CASWeb of Science®Google Scholar 116(a) A. Rabenau, H. Rau, G. Rosenstein, J. Less Common Met. 21 (1970) 395; 10.1016/0022-5088(70)90043-3 CASWeb of Science®Google Scholar(b) Monatsh. Chem. 102 (1971) 1425. 10.1007/BF00917199 CASWeb of Science®Google Scholar 117 R. Kniep, H.-J. Beister, Angew. Chem. 97 (1985) 399; 10.1002/ange.19850970507 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 24 (1985) 393. 10.1002/anie.198503931 Web of Science®Google Scholar 118(a) A. Rabenau, H. Rau, Z. Phys. Chem. (Wiesbaden) 53 (1967) 155; 10.1524/zpch.1967.53.1-6.155 CASWeb of Science®Google Scholar(b) H. Rau, A. Rabenau, Mater. Res. Bull. 2 (1967) 609. 10.1016/0025-5408(67)90120-1 CASWeb of Science®Google Scholar 119(a) R. Bougon, J. Ehretsmann, J. Portier, A. Tressaud in P. Hagenmuller (Hrsg.): Preparative Methods in Solid State Chemistry, Academic Press, New York 1972, S. 401; 10.1016/B978-0-12-313350-2.50016-4 Google Scholar(b) M. L. F. Bayard, T. G. Reynolds, M. Vlasse, H. L. McKinzie, R. J. Arnott, A. Wold, J. Solid State Chem. 3 (1971) 484; 10.1016/0022-4596(71)90090-9 CASWeb of Science®Google Scholar(c) A. W. Sleight, Inorg. Chem. 8 (1969) 1764. 10.1021/ic50078a041 CASWeb of Science®Google Scholar 120 N. V. Belov, N. I. Golovastikov, A. N. Ivashchenko, B. Ya. Kotyuzhanskii, O. K. Melnikov, V. I. Filippov, Sov. Phys. Crystallogr. 27 (1982) 309. Google Scholar 121(a) A. Rabenau, H. Schulz, W. Stoeger, Naturwissenschaften 63 (1976) 245; 10.1007/BF00610918 CASWeb of Science®Google Scholar(b) A. Rabenau, W. Stoeger, G. Trageser in Sh. Somiya (Hrsg.): Proc. 1st Int. Symp. Hydrotherm. React. 1982, Gakujutsu Bunken Fukyu-Kai, Ookayama, Meguru 1983, S. 785. Google Scholar 122 G. Thiele, C. Mrozek, D. Kammerer, K. Wittmann, Z. Naturforsch. B38 (1983) 905. Google Scholar 123 M. Saito, T. Uehiro, Y. Yoshino, Bull. Chem. Soc. Jpn. 53 (1980) 3531. 10.1246/bcsj.53.3531 CASWeb of Science®Google Scholar 124 V. I. Popolitov, A. N. Lobachev, Inorg. Mater. USSR 8 (1972) 1389. Google Scholar 125(a) L. C. Lewis, W. L. Fredericks, J. Cryst. Growth 7 (1970) 120; 10.1016/0022-0248(70)90127-2 CASGoogle Scholar(b) J. Cryst. Growth 60 (1982) 163. 10.1016/0022-0248(82)90190-7 Web of Science®Google Scholar 126 R. Juza, E. Hillenbrand, Z. Anorg. Allg. Chem. 273 (1953) 297. 10.1002/zaac.19532730602 CASWeb of Science®Google Scholar 127 V. A. Kuznetsov, E. P. Efremova, A. R. Kotelnikov, Geokhimiya 1974, 963. Google Scholar 128 A. R. Kotelnikov, V. A. Kuznetsov, A. N. Lobachev, Inorg. Mater. USSR 12 (1976) 827. Web of Science®Google Scholar 129 D. D. MacDonald, Corros. Sci. 16 (1976) 461. 10.1016/0010-938X(76)90066-4 CASWeb of Science®Google Scholar 130 H. E. Townsend, Jr., Corros. Sci. 10 (1970) 343. 10.1016/S0010-938X(70)80025-7 CASWeb of Science®Google Scholar 131 B. G. Pound, D. D. MacDonald, J. W. Tomlinson, Electrochim. Acta 24 (1979) 929. 10.1016/0013-4686(79)87089-9 CASWeb of Science®Google Scholar 132 R. Grybos, A. Samotus, J. Less Common Met. 98 (1984) 131. 10.1016/0022-5088(84)90283-2 CASWeb of Science®Google Scholar 133 I.-M. Chou, Am. Mineral. 63 (1978) 690. CASWeb of Science®Google Scholar 134 H. P. Eugster, 24th Int. Geol. Congr., Montreal 1972, Sec. 10, S. 3. Google Scholar 135 J. D. Frantz, H. P. Eugster, Am. J. Sci. 273 (1973) 268. 10.2475/ajs.273.3.268 CASWeb of Science®Google Scholar 136 I.-M. Chou, H. P. Eugster, Contrib. Mineral. Petrol. 56 (1976) 77. 10.1007/BF00375422 CASWeb of Science®Google Scholar 137 M. Hallam, H. P. Eugster, Contrib. Mineral. Petrol. 57 (1976) 227. CASWeb of Science®Google Scholar 138 J. L. Munoz, H. P. Eugster, Am. Mineral. 54 (1969) 943. CASWeb of Science®Google Scholar 139 L. N. Demianets, A. N. Lobachev, G. A. Emelchenko in H. C. Freyhardt (Hrsg.): Crystals, Growth, Properties, and Applications, Vol. 4, Springer, Berlin 1980, S. 101. Google Scholar 140 A. Rabenau, H. Rau, G. Rosenstein, J. Less Common Met. 21 (1970) 395. 10.1016/0022-5088(70)90043-3 CASWeb of Science®Google Scholar 141(a) J. D. Marcoll, A. Rabenau, D. Mootz, H. Wunderlich, Rev. Chim. Miner. 11 (1974) 607; CASWeb of Science®Google Scholar(b) J. D. Marcoll, Dissertation, Universität Stuttgart 1975. Google Scholar Citing Literature Volume97, Issue12Dezember 1985Pages 1017-1032 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX