MICROTUBULE IONIC CONDUCTION AND ITS IMPLICATIONS FOR HIGHER COGNITIVE FUNCTIONS
2010; Imperial College Press; Volume: 09; Issue: 02 Linguagem: Inglês
10.1142/s0219635210002421
ISSN1757-448X
AutoresTravis J. A. Craddock, Jack A. Tuszyński, Avner Priel, Holly Freedman,
Tópico(s)Plant and Biological Electrophysiology Studies
ResumoJournal of Integrative NeuroscienceVol. 09, No. 02, pp. 103-122 (2010) Research ReportsNo AccessMICROTUBULE IONIC CONDUCTION AND ITS IMPLICATIONS FOR HIGHER COGNITIVE FUNCTIONSTRAVIS J. A. CRADDOCK, JACK A. TUSZYNSKI, AVNER PRIEL, and HOLLY FREEDMANTRAVIS J. A. CRADDOCKDepartment of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, CanadaCorresponding author., JACK A. TUSZYNSKIDepartment of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, CanadaDepartment of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada, AVNER PRIELIsrael Institute for Advanced Research, Rehovot, IsraelDepartment of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada, and HOLLY FREEDMANCCMAR, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugalhttps://doi.org/10.1142/S0219635210002421Cited by:31 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractThe neuronal cytoskeleton has been hypothesized to play a role in higher cognitive functions including learning, memory and consciousness. Experimental evidence suggests that both microtubules and actin filaments act as biological electrical wires that can transmit and amplify electric signals via the flow of condensed ion clouds. The potential transmission of electrical signals via the cytoskeleton is of extreme importance to the electrical activity of neurons in general. In this regard, the unique structure, geometry and electrostatics of microtubules are discussed with the expected impact on their specific functions within the neuron. Electric circuit models of ionic flow along microtubules are discussed in the context of experimental data, and the specific importance of both the tubulin C-terminal tail regions, and the nano-pore openings lining the microtubule wall is elucidated. Overall, these recent results suggest that ions, condensed around the surface of the major filaments of the cytoskeleton, flow along and through microtubules in the presence of potential differences, thus acting as transmission lines propagating intracellular signals in a given cell. The significance of this conductance to the functioning of the electrically active neuron, and to higher cognitive function is also discussed.Keywords:Cytoskeletonionic conductioncognitive function References G. G. Gundersen and T. A. Cook, Curr. Opin. Cell Biol. 11, 81 (1999), DOI: 10.1016/S0955-0674(99)80010-6. Crossref, Medline, ISI, Google ScholarJ. Glanz and L. M. Cook, Science 276, 678 (1997). Crossref, Medline, ISI, Google ScholarA. J. Manitois, C. S. Chen and D. E. Ingber, Proc. Natl. Acad. Sci. USA 90, 1807 (2003). Google Scholar N. J. Woolf , A. Priel and J. A. Tuszynski , Nanoneurosciene: Novel Biolmolecular Contributions to Mind ( Springer , New York , 2009 ) . Google ScholarA. Priel, J. A. Tuszynski and N. J. Woolf, J. Biol. Phys. 36, 3 (2009), DOI: 10.1007/s10867-009-9153-0. Crossref, Medline, ISI, Google Scholar J. A. Tuszynski et al. , CRC Nano and Molecular Electronics Handbook , ed. S. E. Lyshevski ( Taylor and Francis , London , 2007 ) . Google ScholarA. Prielet al., Biophys. J. 90, 4639 (2006), DOI: 10.1529/biophysj.105.078915. Crossref, Medline, ISI, Google ScholarC. Conde and A. Caceres, Nat. Rev. Neurosci. 10, 319 (2009), DOI: 10.1038/nrn2631. Crossref, Medline, ISI, Google ScholarD. K. Meyeret al., J. Neurosci. 20, 6743 (2000). Crossref, Medline, ISI, Google ScholarS. L. Mironov and D. W. Richter, Eur. J. Neurosci. 11, 1831 (2008), DOI: 10.1046/j.1460-9568.1999.00584.x. Crossref, Medline, ISI, Google ScholarK. Y. Furukawaet al., J. Neurochem. 87, 427 (2003), DOI: 10.1046/j.1471-4159.2003.02020.x. Crossref, Medline, ISI, Google ScholarK. Furukawa and M. P. Mattson, Brain. Res. 689, 141 (1995), DOI: 10.1016/0006-8993(95)00537-Z. Crossref, Medline, ISI, Google ScholarB. D. Johnson and L. Byerly, Pfluegers Archiv 429, 14 (1994), DOI: 10.1007/BF02584025. Crossref, Medline, ISI, Google ScholarB. D. Johnson and L. Byerly, Neuron 10, 797 (1993), DOI: 10.1016/0896-6273(93)90196-X. Crossref, Medline, ISI, Google Scholar N. J. Woolf , The Emerging Physics of Consciousness , ed. J. A. Tuszynski ( Springer , New York , 2006 ) . Crossref, Google ScholarC. OConnell, A. OMalley and C. M. Regan, Neurosci. 76, 5562 (1997). Google ScholarR. Mileusnic, C. L. Lancashire and S. P. Rose, Learn. Mem. 12, 615 (2005), DOI: 10.1101/lm.38005. Crossref, Medline, ISI, Google ScholarT. Nakayama and T. Sawada, Pharmacol. Biochem. Behav. 71, 119 (2002), DOI: 10.1016/S0091-3057(01)00634-7. Crossref, Medline, ISI, Google ScholarG. Bensimon and R. Chermat, Pharmacol. Biochem. Behav. 38, 141 (1991), DOI: 10.1016/0091-3057(91)90602-X. Crossref, Medline, ISI, Google ScholarP. L. Di Patreet al., Brain Res. 523, 316 (1990). Crossref, Medline, ISI, Google ScholarS. Yamaguchiet al., Brain Res. Bull. 76, 282 (2008), DOI: 10.1016/j.brainresbull.2008.02.010. Crossref, Medline, ISI, Google ScholarL. Dehmelt and S. Halpain, Genome Biol. 6, 204 (2004), DOI: 10.1186/gb-2004-6-1-204. Crossref, Medline, ISI, Google ScholarA. Matus, J. Physiol. (Paris) 84, 134 (1990). Medline, Google ScholarH. X. Liuet al., Brain Res. Mol. Brain Res. 139, 169 (2005), DOI: 10.1016/j.molbrainres.2005.05.014. Crossref, Medline, Google ScholarA. Shimadaet al., Neuropathol. Appl. Neurobiol. 32, 1 (2006), DOI: 10.1111/j.1365-2990.2006.00632.x. Crossref, Medline, ISI, Google ScholarN. J. Woolf, M. D. Zinnerman and G. V. Johnson, Brain Res. 821, 241 (1999), DOI: 10.1016/S0006-8993(99)01064-1. Crossref, Medline, ISI, Google ScholarN. J. Woolf, Prog. Neurobiol. 55, 5977 (1998), DOI: 10.1016/S0301-0082(97)00094-4. Google ScholarN. J. Woolfet al., NeuroReport 5, 1045 (1994), DOI: 10.1097/00001756-199405000-00007. Crossref, Medline, ISI, Google ScholarT. J. Nelson, P. S. Backlund Jr and D. L. Alkon, Hippocampus 14, 46 (2004), DOI: 10.1002/hipo.10152. Crossref, Medline, ISI, Google ScholarS. Cavallaroet al., Proc. Natl. Acad. Sci. USA 99, 16279 (2002), DOI: 10.1073/pnas.242597199. Crossref, Medline, ISI, Google ScholarK. Boekhoornet al., J. Neurosci. 26, 3514 (2006), DOI: 10.1523/JNEUROSCI.5425-05.2006. Crossref, Medline, ISI, Google ScholarL. Pennanenet al., Genes Brain Behav. 5, 369 (2006), DOI: 10.1111/j.1601-183X.2005.00165.x. Crossref, Medline, ISI, Google ScholarA. Mershinet al., Learn. Mem. 11, 277 (2004), DOI: 10.1101/lm.70804. Crossref, Medline, ISI, Google ScholarL. Minatiet al., Am. J. Alzheimers Dis. Other Demen. 24, 95 (2009), DOI: 10.1177/1533317508328602. Crossref, Medline, ISI, Google ScholarR. J. Colbran and A. M. Brown, Curr. Opin. Neurobiol. 14, 318 (2004), DOI: 10.1016/j.conb.2004.05.008. Crossref, Medline, ISI, Google ScholarJ. Lisman, H. Schulman and H. Cline, Nat. Rev. Neurosci. 3, 175 (2002), DOI: 10.1038/nrn753. Crossref, Medline, ISI, Google ScholarK. Fukunaga, D. Muller and E. Miyamoto, Neurochem. Int. 28, 343 (1996), DOI: 10.1016/0197-0186(95)00097-6. Crossref, Medline, ISI, Google ScholarL. A. Robertset al., Mol. Brain Res. 56, 38 (1998), DOI: 10.1016/S0169-328X(98)00026-6. Crossref, Medline, Google ScholarF. Wandosellet al., J. Biol. Chem. 261, 10332 (1986). Crossref, Medline, ISI, Google ScholarE. A. Van der Zeeet al., Cereb. Cortex 4, 376 (1994). Crossref, Medline, ISI, Google ScholarZ. Khuchuaet al., Neurosci. 119, 101 (2003), DOI: 10.1016/S0306-4522(03)00094-0. Crossref, Medline, ISI, Google Scholar C. Kerssens and M. Alkire , Consciousness, Awareness and Anesthesia , ed. G. Mashour ( Cambridge University Press , New York , 2010 ) . Google ScholarG. M. Edelman, Proc. Natl. Acad. Sci. USA 100, 5520 (2003), DOI: 10.1073/pnas.0931349100. Crossref, Medline, ISI, Google ScholarJ. Z. Panet al., J. Proteome Res. 6, 582 (2007), DOI: 10.1021/pr060311u. Crossref, Medline, ISI, Google ScholarJ. Z. Panet al., Proteomics 8, 2983 (2008), DOI: 10.1002/pmic.200800057. Crossref, Medline, ISI, Google ScholarC. D. Futtereret al., Anesthesiology 100, 302 (2004). Crossref, Medline, ISI, Google ScholarA. Kalenkaet al., Anesth. Analg. 104, 1129 (2007), DOI: 10.1213/01.ane.0000260799.37107.e6. Crossref, Medline, ISI, Google ScholarG. Akket al., Pharmacol. Ther. 116, 35 (2007), DOI: 10.1016/j.pharmthera.2007.03.004. Crossref, Medline, ISI, Google ScholarS. Mennericket al., Mol. Pharmacol. 65, 1191 (2004), DOI: 10.1124/mol.65.5.1191. Crossref, Medline, ISI, Google ScholarA. C. Allison and J. F. Nunn, Lancet 292, 1326 (1968), DOI: 10.1016/S0140-6736(68)91821-7. Crossref, Google ScholarS. Hameroffet al., Biosystems 64, 149 (2002), DOI: 10.1016/S0303-2647(01)00183-6. Crossref, Medline, ISI, Google ScholarS. Hameroff and P. Marcer, Phil. Trans. R. Soc. Lond. A 356, 1869 (1998). ISI, Google ScholarL. P. Rosa and J. Faber, Phys. Rev. E 70, 031902 (2004), DOI: 10.1103/PhysRevE.70.031902. Crossref, Google ScholarS. Hagan, S. R. Hameroff and J. A. Tuszynski, Phys. Rev. E 65, 061901 (2002), DOI: 10.1103/PhysRevE.65.061901. Crossref, ISI, Google ScholarM. Tegmark, Phys. Rev. E 61, 4194 (2000), DOI: 10.1103/PhysRevE.61.4194. Crossref, Medline, ISI, Google ScholarP. M. Vassilevet al., Biosci. Rep. 2, 1025 (1982), DOI: 10.1007/BF01122171. Crossref, Medline, ISI, Google ScholarE. D. Kirsonet al., Cancer Res. 64, 3288 (2004), DOI: 10.1158/0008-5472.CAN-04-0083. Crossref, Medline, ISI, Google ScholarG. Goddard and J. E. Whittier, Biomolecules as nanomaterials: Interface characterization for sensor development, Proc. SPIE. Int. Soc. Opt. Eng. 6172 (2006) pp. 43–54. Google ScholarW. Fritzscheet al., Nanotechnol. 10, 331 (1999), DOI: 10.1088/0957-4484/10/3/317. Crossref, ISI, Google ScholarW. Fritzscheet al., Nanotechnol. 9, 177 (1998), DOI: 10.1088/0957-4484/9/3/006. Crossref, ISI, Google ScholarM. Umnovet al., J. Materials Sci. 42, 373 (2007), DOI: 10.1007/s10853-006-1075-7. Crossref, ISI, Google ScholarI. Minoura and E. Muto, Biophys. J. 90, 3739 (2006), DOI: 10.1529/biophysj.105.071324. Crossref, Medline, ISI, Google ScholarH. Liet al., Structure 10, 1317 (2002), DOI: 10.1016/S0969-2126(02)00827-4. Crossref, Medline, ISI, Google ScholarD. Sept, N. A. Baker and J. A. McCammon, Prot. Sci. 12, 2257 (2003), DOI: 10.1110/ps.03187503. Crossref, Medline, ISI, Google ScholarY. H. Song and E. Mandelkow, Proc. Natl. Acad. Sci. USA 99, 1671 (1993). Medline, ISI, Google ScholarN. A. Bakeret al., Proc. Natl. Acad. Sci. USA 98, 10037 (2001), DOI: 10.1073/pnas.181342398. Crossref, Medline, ISI, Google ScholarJ. M. Dixon, P. Chelminiak and J. A. Tuszynski, Physica A 387, 4183 (2008), DOI: 10.1016/j.physa.2008.02.044. Crossref, ISI, Google ScholarA. Priel and J. A. Tuszynski, Europhys. Lett. 83, 68004 (2008), DOI: 10.1209/0295-5075/83/68004. Crossref, Google ScholarA. Priel, J. A. Tuszynski and N. J. Woolf, Eur. Biophys. J. 35, 40 (2005), DOI: 10.1007/s00249-005-0003-0. Crossref, Medline, ISI, Google ScholarA. Priel, J. A. Tuszynski and H. F. Cantiello, Electromagn. Biol. Med. 24, 221 (2005), DOI: 10.1080/15368370500379590. Crossref, ISI, Google ScholarP. W. Chelminiak, J. A. Tuszynski and J. M. Dixon, Interdiscip. Sci. Comput. Life Sci. 1, 108 (2009), DOI: 10.1007/s12539-009-0010-9. Crossref, Medline, ISI, Google ScholarM. V. Satarïcet al., Eur. Biophys. J. 38, 637 (2009). Crossref, Medline, ISI, Google ScholarH. Freedmanet al., Phys. Rev. E (2010). Medline, ISI, Google ScholarJ. F. Diaz, I. Barasoain and J. M. Andreu, J. Biol. Chem. 278, 8407 (2003), DOI: 10.1074/jbc.M211163200. Crossref, Medline, ISI, Google ScholarD. Palet al., Biochem. 40, 15512 (2001). Crossref, Medline, ISI, Google ScholarJ. Szaszet al., Biochem. 12, 4572 (1986). Google ScholarL. Dehmeltet al., J. Neurosci. 23, 9479 (2003). Crossref, Medline, ISI, Google ScholarJ. F. Challacombe, D. M. Snow and P. C. Letourneau, J. Neurosci. 17, 3085 (1997). Crossref, Medline, ISI, Google ScholarJ. Tuszynskiet al., Biophys. J. 86, 1890 (2004), DOI: 10.1016/S0006-3495(04)74255-1. Crossref, Medline, ISI, Google ScholarT. J. Mitchison, Mol. Biol. Cell 3, 1309 (1992). Crossref, Medline, ISI, Google ScholarE. C. Lin and H. F. Cantiello, Biophys. J. 65, 1371 (1993), DOI: 10.1016/S0006-3495(93)81188-3. Crossref, Medline, ISI, Google ScholarH. F. Cantiello, C. Patenaude and K. Zaner, Biophys. J. 59, 1284 (1991), DOI: 10.1016/S0006-3495(91)82343-8. Crossref, Medline, ISI, Google ScholarM. Morales and E. Fifkova, Cell Tissue Res. 256, 447 (1989), DOI: 10.1007/BF00225592. Medline, ISI, Google ScholarO. C. Rodriguezet al., Nature Cell Biol. 5, 599 (2003), DOI: 10.1038/ncb0703-599. Crossref, Medline, ISI, Google ScholarM. Passafaroet al., Nature Neurosci. 2, 1063 (1999). Crossref, Medline, ISI, Google ScholarE. Kube-Granderath and M. Schliwa, Protist. 149, 123 (1998), DOI: 10.1016/S1434-4610(98)70016-1. Crossref, Medline, ISI, Google Scholar R. F. Luduena and A. Banerjee , The Role of Microtubules in Cell Biology, Neurobiology, and Oncology , ed. T. Fojo ( Humana Press , 2008 ) . Google Scholar R. Gordon , The Hierarchical Genome and Differentiation Waves ( World Scientific , Singapore , 1999 ) . Link, Google ScholarD. L. Sackett, Subcell. Biochem. 24, 255 (1995). Crossref, Medline, Google ScholarJ. A. Tuszynskiet al., Int. J. Dev. Biol. 50, 341 (2006), DOI: 10.1387/ijdb.052063jt. Crossref, Medline, ISI, Google ScholarJ. Duan and M. A. Gorovsky, Curr. Biol. 12, 313 (2002), DOI: 10.1016/S0960-9822(02)00651-6. Crossref, Medline, ISI, Google ScholarR. F. Luduena, Int. Rev. Cytol. 178, 207 (1997), DOI: 10.1016/S0074-7696(08)62138-5. Crossref, Medline, ISI, Google ScholarT. Sarkaret al., Proteins 44, 262 (2001), DOI: 10.1002/prot.1091. Crossref, Medline, ISI, Google ScholarV. Makrideset al., J. Biol. Chem. 278, 33298 (2003), DOI: 10.1074/jbc.M305207200. Crossref, Medline, ISI, Google Scholar R. F. Luduena , The Role of Microtubules in Cell Biology, Neurobiology, and Oncology , ed. T. Fojo ( Humana Press , 2008 ) . Google ScholarV. Redeker, J. Rossier and A. Frankfurter, Biochem. 37, 14838 (1998). Crossref, Medline, ISI, Google ScholarT. H. MacRae, Eur. J. Biochem. 244, 265 (1997), DOI: 10.1111/j.1432-1033.1997.00265.x. Crossref, Medline, Google ScholarR. Strackeet al., Biochem. Biophys. Res. Com. 293, 602 (2002), DOI: 10.1016/S0006-291X(02)00251-6. Crossref, Medline, ISI, Google ScholarS. Behrenset al., Chem. Mater. 16, 3085 (2004), DOI: 10.1021/cm049462s. Crossref, ISI, Google ScholarA. J. Saubermann and M. L. Gallagher, Anesthesiology 38, 25 (1973), DOI: 10.1097/00000542-197301000-00008. Crossref, Medline, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 31Chirped modulated wave excitations in an electrical model of microtubulesEmmanuel Kengne and Ahmed Lakhssassi1 Feb 2023 | Chaos, Solitons & Fractals, Vol. 167The significance of bioelectricity on all levels of organization of an organism. Part 1: From the subcellular level to cellsRichard H.W. Funk and Felix Scholkmann1 Jan 2023 | Progress in Biophysics and Molecular Biology, Vol. 177WDR72 regulates vesicle trafficking in ameloblastsKaitlin Katsura, Yukiko Nakano, Yan Zhang, Rozana Shemirani and Wu Li et al.18 February 2022 | Scientific Reports, Vol. 12, No. 1Neurons: The Interplay between Cytoskeleton, Ion Channels/Transporters and MitochondriaPaola Alberti, Sara Semperboni, Guido Cavaletti and Arianna Scuteri11 August 2022 | Cells, Vol. 11, No. 16Intrabody hybrid perpetual nanonetworks based on simultaneous wired and wireless nanocommunicationsMasoud Asghari1 Jun 2022 | Nano Communication Networks, Vol. 32-33Microtubule Dynamics and Neuronal Excitability: Advances on Cytoskeletal Components Implicated in Epileptic PhenomenaGiuditta Gambino, Valerio Rizzo, Giuseppe Giglia, Giuseppe Ferraro and Pierangelo Sardo14 September 2020 | Cellular and Molecular Neurobiology, Vol. 42, No. 3Fano resonance line shapes in the Raman spectra of tubulin and microtubules reveal quantum effectsWenxu Zhang, Travis J.A. Craddock, Yajuan Li, Mira Swartzlander and Robert R. Alfano et al.1 Mar 2022 | Biophysical Reports, Vol. 2, No. 1Alzheimer's and Consciousness: How Much Subjectivity Is Objective?Vladan Bajic, Natasa Misic, Ivana Stankovic, Bozidarka Zaric and George Perry20 July 2021 | Neuroscience Insights, Vol. 16C-terminal Tail of β-Tubulin and its Role in the Alterations of Dynein Binding ModeKali A. Heale and Laleh Alisaraie27 May 2020 | Cell Biochemistry and Biophysics, Vol. 78, No. 3The quantum basis of spatiotemporality in perception and consciousnessAbir U. Igamberdiev and Nikita E. Shklovskiy-Kordi1 Nov 2017 | Progress in Biophysics and Molecular Biology, Vol. 130Epilepsy-associated alterations in hippocampal excitabilityMojdeh Navidhamidi, Maedeh Ghasemi and Nasrin Mehranfard1 Apr 2017 | Reviews in the Neurosciences, Vol. 28, No. 3Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesisFelix Scholkmann6 June 2016 | Theoretical Biology and Medical Modelling, Vol. 13, No. 1An Overview of Sub-Cellular Mechanisms Involved in the Action of TTFieldsJack Tuszynski, Cornelia Wenger, Douglas Friesen and Jordane Preto12 November 2016 | International Journal of Environmental Research and Public Health, Vol. 13, No. 11On Having No Head: Cognition throughout Biological SystemsFrantišek Baluška and Michael Levin21 June 2016 | Frontiers in Psychology, Vol. 7Waves transmission and amplification in an electrical model of microtubulesFrank T. Ndjomatchoua, Clément Tchawoua, Francois M. M. Kakmeni, Bruno P. Le Ru and Henri E. Z. Tonnang1 May 2016 | Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 26, No. 5Hippocampal Hyperexcitability is Modulated by Microtubule-Active Agent: Evidence from In Vivo and In Vitro Epilepsy Models in the RatFabio Carletti, Pierangelo Sardo, Giuditta Gambino, Xin-An Liu and Giuseppe Ferraro et al.9 February 2016 | Frontiers in Cellular Neuroscience, Vol. 10Biological wires, communication systems, and implications for diseaseDouglas E. Friesen, Travis J.A. Craddock, Aarat P. Kalra and Jack A. Tuszynski1 Jan 2015 | Biosystems, Vol. 127Electromagnetic fields with 217 Hz and 0.2 mT as hazardous factors for tubulin structure and assembly (in vitro study)Ali Afrasiabi, Gholam Hossein Riazi, Ali Dadras, Elaheh Tavili and Behafarid Ghalandari et al.29 December 2013 | Journal of the Iranian Chemical Society, Vol. 11, No. 5Keeping time: Could quantum beating in microtubules be the basis for the neural synchrony related to consciousness?Travis J. A. Craddock, Avner Priel, and Jack A. Tuszynski10 July 2014 | Journal of Integrative Neuroscience, Vol. 13, No. 02Consciousness and Neuronal Microtubules: The Penrose-Hameroff Quantum Model in RetrospectEugenio Frixione18 March 2014Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other DiseasesRobert Davidson, Ann Lauritzen and Stephanie Seneff13 September 2013 | Entropy, Vol. 15, No. 12Spinodal decomposition and the emergence of dissipative transient periodic spatio-temporal patterns in acentrosomal microtubule multitudes of different morphologyVlado A. Buljan, R. M. Damian Holsinger, D. Brown, J. J. Bohorquez-Florez and B. D. Hambly et al.1 Jun 2013 | Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 23, No. 2Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore–microtubule interfaceVlado A. Buljan, R. M. Damian Holsinger, Brett D. Hambly, Richard B. Banati and Elena P. Ivanova18 October 2012 | Journal of Biological Physics, Vol. 39, No. 1The principle of coherence in multi-level brain information processingMatej Plankar, Simon Brežan and Igor Jerman1 Jan 2013 | Progress in Biophysics and Molecular Biology, Vol. 111, No. 1Insights into plant consciousness from neuroscience, physics and mathematics: A role for quasicrystals?John Gardiner31 October 2014 | Plant Signaling & Behavior, Vol. 7, No. 9Biomechanical and coherent phenomena in morphogenetic relaxation processesAbir U. Igamberdiev1 Sep 2012 | Biosystems, Vol. 109, No. 3A comparative analysis of integrating visual information in local neuronal ensemblesDorian Aur1 May 2012 | Journal of Neuroscience Methods, Vol. 207, No. 1Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?Travis J. A. Craddock, Jack A. Tuszynski, Stuart Hameroff and Gustav Bernroider8 March 2012 | PLoS Computational Biology, Vol. 8, No. 3From Neuroelectrodynamics to Thinking MachinesDorian Aur9 August 2011 | Cognitive Computation, Vol. 4, No. 1An investigation of the plausibility of stochastic resonance in tubulin dimersAditya A. Saha, Travis J.A. Craddock and Jack A. Tuszynski1 Feb 2012 | Biosystems, Vol. 107, No. 2Computing by physical interaction in neuronsDorian Aur, Mandar Jog, and Roman R. Poznanski30 April 2012 | Journal of Integrative Neuroscience, Vol. 10, No. 04 Recommended Vol. 09, No. 02 Metrics History Received 7 May 2010 Accepted 21 May 2010 KeywordsCytoskeletonionic conductioncognitive functionPDF download
Referência(s)