On cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations
1955; Wiley; Volume: 8; Issue: 4 Linguagem: Inglês
10.1002/cpa.3160080411
ISSN1097-0312
Autores Tópico(s)Spectral Theory in Mathematical Physics
ResumoCommunications on Pure and Applied MathematicsVolume 8, Issue 4 p. 615-633 Article On cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations Peter D. Lax, Peter D. LaxSearch for more papers by this author Peter D. Lax, Peter D. LaxSearch for more papers by this author First published: November 1955 https://doi.org/10.1002/cpa.3160080411Citations: 98AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography 1 Courant, R., Friedrichs, K., and Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., Vol. 100, No. 1/2, 1928, pp. 32–74. 2 Sobolev, S., Sur quelques évaluations concernant les familles des fonctions ayant des dérivées à carré intégrable, C. R. Acad. Sci. S. S.S. R., N. S. L. 1936, pp. 279–282. 3 Courant, R. and Hilbert, D., Methoden der mathematischen Physik, Vol. II, Chapt. VII, Springer, Berlin, 1937. 4 Sobolev, S., On a theorem of functional analysis, Mat. Sbornik, N. S. 4, 1938, pp. 471–497. 5 Friedrichs, K. O., On differential operators in Hilbert spaces, Amer. J. Math., Vol. LXI, No. 2, 1939, pp. 523–544. 6 Petrowsky, I. G., Sur l'analyticité des solutions des systèmes d'épations différentielles, Recueil mathématique, N. S. (Mat. Sbornik), Vol. 5, 1939, pp. 3–70. 7 Friedrichs, K. O., The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc., Vol. 55, No. 1, 1944, pp. 132–151. 8 Friedrichs, K. O., A theorem of lichtenstein, Duke Math. J., Vol. 14, No. 1, 1947, pp. 67–82. 9 Van Hove, L., (A) Sur l'extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues, Indagationes Math., Vol. 7, No. 1, 1947, pp. 3–8. (b) Sur le signe de la variation seconde des intégrales multiples à plusieurs functions inconnues, Acad. Roy. Belgique, Cl. Sci., Mém., Vol. 24, No. 5, 1949. 10 Vishik, M. I., The method of orthogonal and direct decomposition in the theory of elliptic differential equations, Mat. Sbornik, N. S. 25, 1949, pp. 189–234. 11 Schwartz, L., Théorie des distributions, Paris, Hermann, 1950–1951. 12 Gårding, L., Le probléme de Dirichlet pour les équations aux dérivées partielles élliptiques homogénes å coéfficients constants, C. R. Acad. Sci. Paris, Vol. 230, 1950, pp. 1030–1032. 13 Vishik, M. I., On strongly elliptic systems of diflerential equations (A), Akad. Nauk, S. S.S. R., Doklady, Vol. 74, 1950, pp. 881–884. (B) Mat. Sbornik, N. S. 29, 1951, pp. 615–676. 14 John, F., General properties of solutions of linear elliptic partial differential equations Proc. of the Symposium on Spectral Theory and Differential Problems, Stillwater, Oklahoma, 1951, Chap. III. 15 Gåding, L., Le probléme de Dirichlet pour les équations aux dérivées partielles élliptiques linéaires dans des domaines bornés, C. R. Acad. Sci. Paris, Vol. 233, 1951, pp. 1554–1556. 16 Milgram, A. and Rosenbloom, P. C., Harmonic forms and heat conduction: Part I, Closed Riemannian manifolds; Part II, Heat distribution on complexes and approximation theory, Proc. Nat. Acad. Sci., Vol. 37, 1951, pp. 180–184, pp. 435–438. 17 Browder, F. E., (A) The Dirichlet problem for linear elliptic equations of arbitrary even order with variable coefficients, Proc. Nat. Acad. Sci., Vol. 38, No. 3, 1952, pp. 230–235. (B) The Dirichlet and vibration problems for linear elliptic differential equations of arbitrary order, Vol. 38, No. 8, 1952, pp. 741–747. (C) Assumption of boundary values and the Green's function in the Dirichlet problem for the general linear elliptic equation, Vol. 39, No. 3, 1953, pp. 179–184. (D) Linear parabolic differential equations of arbitrary order: general boundary-value problems for elliptic equations, Vol. 39, No. 3, 1953, pp. 185–190. 18 John, F., Derivatives of continuous weak solutions of linear elliptic equations, Comm. Pure Appl. Math., Vol. VI, No. 3, 1953, pp. 327–335. 19 Browder, F. E., Strongly elliptic systems of differential equations, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, No. 33, Princeton Univ. Press, 1954, pp. 15–51. 20 Milgram, A. and Lax, P. D., Parabolic equations, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, No. 33, Princeton Univ. Press, 1954, pp. 167–190. 21 Morrey, C. B., Second order elliptic system of differential equations, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, No. 33, Princeton Univ. Press, 1954, pp. 101–159. 22 Weber, H., Die partiellen Differentialgleichungen der mathematischen Physik nach Riemann's Vorlesungen in 4-ter Auflgae neu bearbeitet, Braunschweig, Friedrich Vieweg, 1900, Vol. 1, p. 390. 23 Hadamard, J., Sur l'intégrale résiduelle, Bull. Soc. Math. France, Vol. 28, 1900, pp. 69–90. 24 Zaremba, S., Sopra un teorema d'unicitá relativo alla equazione delle onde sferiche, Rend. Accad. Naz. Lincei, Ser. 5, Vol. 24, 1915, pp. 904–908. 25 Rubinowicz, A., (A) Hertstellung yon Lösungen gemischter Randwertprobteme bei hyperbolischen Differentialgleichungen zweiter Ordnung durch Zusammenstülung aus Lösungen einfacherer gemischter Randwertaufgaben, Monatsh. Math. Phys., Vol. 30, 1920, p. 65. (b) Über die Eindeutigkeit der Lösung der Maxwellschen Gleichungen, Phys. Zeit., Vol. 27, 1926, p. 707. (c) Zur Integration der Wellengleichung auf Riemannschen Flächen, Math. Ann., Vol. 96, 1927, pp. 648–687. 26 Friedrichs, K., and Lewy, H., (A) Über die Eindeutigkeit und das Abhängigkeitsgebiet der Lösungen beim Anfangswertproblem linearer hyperbolischer Differentialgleichungen, Math. Ann., Vol. 98, 1927, pp. 192–204. (B) Über fortsetzbare Anfangsbedingungen bei hyperbolischen Differentialgleichungen in drei Veränderlichen, Nachr. Ges. Wiss. Göttingen, No. 26, 1932, pp. 135–143. 27 Schauder, J., Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unubhangigen Veränderlichen, Fund. Math., Vol. 24, 1935, pp. 213–246. 28 Sobolev, E. L., (A) Diffractsia vol i na rimanovykh poverkhnustukh, Akad. Nauk, SSSR, Trudy Mat. Inst. V. A. Steklova, Vol. 9, 1935, pp. 39–105. (B) Méthode nouvelle å résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales, Rec. Math. (Mat. Sbornik), N. S. 1(43), 1936, pp. 39–72. 29 Frankl, F., über das Anfangswertproblem füx lineare und nichtlineare hyperbolische partielle Differentialgleichungen zweiter Ordnung, Rec. Math. (Mat. Sbornik), N. S. 2(44), 1937, pp. 793–814. 30 Petrovskii, I., Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen, Rec. Math. (Mat. Sbornik), N. S. 2(44), 1937, pp. 814–868. 31 Sobolev, S. L., Sur la théorie des équations hyperboliques aux dérivées partielles, Rec. Math. (Mat. Sbornik), N. S. 5(47), 1939, pp. 71–99. 32 Leray, J., (A) Lectures on hyperbolic equations with variable coefficients, Princeton, Inst. for Adv. Stud., Fall, 1952. (B) On linear hyperbolic differential equations with variable coefficients on vectir soaces, Annals of Mathematics Studies, No. 33, Princeton Univ. Press, 1954, pp. 201–210. 33 Holmgren, E., Über Systeme von linearen partiellen Differentialgleichungen, Öfvere. Kongl. Vetens.-Akad. Förh., Vol. 58, 1901, pp. 91–103. 34 Hadamard, J., Lectures on Cauchy's problem in linear partial differential equations, Yale Univ. Press, 1923, or Le Probléme de Cauchy et les équations aux dérivées partielles linéires hyperboliques, Hermann, Paris, 1932. 35 Riesz, M., L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., Vol. 81, 1948, pp. 1–222. 36 Bureau, F., Quelques questions de Géométrie suggétrie par la théorie dea équations aux dérivées partielles totalement hyperboliques, Colloque de Géométrie Algébrique, Liege, 1949. 37 Weyl, H., The method of orthogonal projection in potential theory, Duke Math. J., Vol. 7, 1940, pp. 411–444. 38 Gårding, L., On a lemma by H. Weyl, Kungl. Fys. Sällskapets i Lund Förh., Vol. 20, 1950, pp. 1–4. 39 Courant, R., Variational methods for the solution of problems of equilibrium and Vibrations, Bull. Amer. Math. Soc., Vol. 49, 1943, pp. 1–23. 40 Gårding, L., L'inégalité de Friedrich et Lewy pour les équations hyperboliques linéires d'ordre supérieur, C. R. Acad. Sci. Paris, Vol. 239, 1954, pp. 849–850. 41 Nirenberg, L., Remarks on strongly elliptic partial differential equations, appearing in this issue. 42 Friedrichs, K. O., Differentiability of solutions of elliptic differential equations, Comm. Pure and Appl. Math., Vol. 6, 1953, pp. 299–326. 43 Friedrichs, K. O., Symmetric hyperbolic linear differential equations, Comm. Pure and Appl. Math., Vol. 7, 1954, pp. 345–392. Citing Literature Volume8, Issue4November 1955Pages 615-633 ReferencesRelatedInformation
Referência(s)