Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site
2000; Elsevier BV; Volume: 74; Issue: 3 Linguagem: Inglês
10.1016/s0304-3894(99)00189-2
ISSN1873-3336
AutoresBarbara L. Hall, Thomas E. Lachmar, R. Ryan Dupont,
Tópico(s)Drilling and Well Engineering
ResumoIn situ air sparging (IAS) has been used since the mid-1980s, but few carefully designed field studies have been performed to evaluate its effectiveness. In this study, 27 discrete monitoring points (MPs) were installed at a gasoline-contaminated site to investigate the efficacy of IAS. Each MP was instrumented with a pressure transducer and a Technalithics dissolved oxygen (DO) probe, and located so they could be used to characterize subsurface changes in total head and DO with depth, distance and orientation around a central injection well. Because the blower over-heated and automatically shut down after approximately 30 min and short-circuiting of air into two MPs occurred within 2 min, the study was designed as three sets of three 30-min trials. Longer trials would not have yielded different nor more insightful results. A volume of soil was not oxygenated during any injection. Instead, air traveled directly to at least four of seven different MPs during eight of the nine trials, probably as a result of an air bubble forming beneath a confining layer. The order of air arrival at the MPs varied during the first few trials, but once a preferential pathway was established, it did not collapse between trials and provided the shortest distance to the vadose zone during subsequent trials. Oxygen uptake rates estimated for MPs that received air during any trial exceeded the consumption rates of the Technalithics DO probes, and indicate that the probes could be used for estimating oxygen transfer during system operation or for oxygen uptake measurements during shut-down tests. The data from the monitoring system indicate that IAS is infeasible for remediation of soil and groundwater at this site due to its low horizontal hydraulic conductivity. Similar behavior is anticipated when IAS is applied at other sites with low hydraulic conductivity materials.
Referência(s)