A Survey of Progress in Graph Theory in the Soviet Union
1970; Society for Industrial and Applied Mathematics; Volume: 12; Issue: S1 Linguagem: Inglês
10.1137/1012125
ISSN1095-7200
AutoresJames Turner, William H. Kautz,
Tópico(s)Facility Location and Emergency Management
ResumoA Survey of Progress in Graph Theory in the Soviet UnionJames Turner and William H. KautzJames Turner and William H. Kautzhttps://doi.org/10.1137/1012125PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] G. M. Adelson-Velskii and , E. M. Landis, An algorithm for organization of information, Dokl. Akad. Nauk SSSR, 146 (1962), 263–266, Trans.: Sov. Math., 3 (1962), pp. 1259–1263; Abs: Ref. Zh. Mat., no. 4V454 (1963) MR0156719 (27:6639) Google Scholar[2] G. M. Adelson-Velskii and , F. M. Filler, A program for calculating network charts, Ž. Vyčisl. Mat. i Mat. Fiz., 5 (1965), 144–148, Trans.: USSR Comput. Math., 5 (1965), pp. 206–212 MR0175326 (30:5511) Google Scholar[3] S. Ya. Agakisheva, Graphs having given vertex neighborhoods, Mat. Zamet., 3 (1968), 211–216 Google Scholar[4] G. P. Agibalov, Elementary paths in a graph, Trudy Sibirskovo Fiziko-tekhnicheskovo Instituta pri Tomskom Universitete, (1966), 155–157, Abs: Ref. Zh. Mat., no. 5V160 (1967) Google Scholar[5] A. Ya. Aizenshtat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sibirsk. Mat. Z., 3 (1962), 161–169, Abs: Ref. Zh. Mat., no. 10A166 (1962) MR0148781 (26:6287) Google Scholar[6] V. Ya. Altaev, et al., The theory of network planning and control, Avt. i Telem., 27 (1966), 184–201, Trans.: A. & R.C., 27 (1966), no. 5, pp. 909–928; Abs: Ref. Zh. Mat., no. 12V346 (1966) Google Scholar[7] R. V. Ambartsumyan, Signal detection in a pulse flow, Akad. Nauk Armjan. SSR Dokl., 38 (1964), 71–76 MR0167341 (29:4614) Google Scholar[8] V. I. Anisimov, Some problems in the theory of linear graphs, Avt. i Telem., 28 (1967), 56–63, Trans.: A. & R.C., 28 (1967), no. 8, pp. 1131–1137; Abs: Ref. Zh. Mat., no. 1V269 (1968) Google Scholar[9] Yu. A. Avdeev and , A. P. Nikolaeva, Project control using the critical path technique (an introduction to PERT-TIME), Vychisl. Sis., (1964), , Trans.: Comp. El. Sys., 2 (1966), pp. 92–114 Google Scholar[10] K. A. Bagrinovskii and , I. B. Rabinovich, The statement of a problem in the analysis of a network diagram, Vyčisl. Sistemy Vyp., 11 (1964), 71–93, Trans.: Comp. El. Sys., 2 (1966), 128–147; Abs: Ref. Zh. Mat., no. 2A400 (1965) MR0237230 (38:5520) Google Scholar[11] N. A. Balandina, The simplification of an analyzer for machine translation, Prob. Kiber., (1963), 265–277 Google Scholar[12] Ya. M. Barzdyn, Problems concerning the basis of directed graphs, Uchenie Zapiski Latv. Universiteta, 28 (1959), 33–44, Abs: Ref. Zh. Mat., no. 5A293 (1962) Google Scholar[13] A. V. Bazhenova, The recovery and processing of information concerning the multiplicity of bonds in the structural formulas of organic chemistry, Doklady na Konferentsii po Obrabotke Informatsii, Mashinnomu Perevodu, i Avtomaticheskomu Chteniyu Teksta, no. 1, Izdat. Instituta Nauchnoi Informatsii Akad. Nauk SSSR, Moscow, 1961, 18– Google Scholar[14] G. A. Bekishev, The parallelization of computation algorithms, Vychisl. Sis., (1962–1963), 22–30, Trans.: Comp. El. Sys., 1(1966), pp. 197–204 Google Scholar[15] G. A. Bekishev, The solution of a problem in graph theory, Vychisl. Sis., (1963), 57–62, Trans.: Comp. El. Sys., 1 (1966), pp. 255–259; Abs: Ref. Zh. Mat., no. 6A283 (1964); Abs: MR, 30, no. 5904; Abs: CCAT, no. 10, p. 142 Google Scholar[16] G. A. Bekishev, On a problem of decomposition into classes of vertices of an oriented graph, Diskret. Analiz No., 8 (1966), 27–34, Abs: Ref. Zh. Mat., no. 7V206 (1967); Abs: MR, 34, p. 762 MR0204310 (34:4154) Google Scholar[17] I. N. Bernshtein and , S. A. Panov, An algorithm for the solution of a routing problem, Ekon. Mat. Met., (1966), 711–722 Google Scholar[18] L. A. Bessonov, Elements of Graph Theory, Uchebn. Posobie Vses. Zaochn. Energ. Instituta, Moscow, 1964 Google Scholar[19] B. I. Blazhkevich, The application of a topological method to the study of linear systems, Teoriya Elektrotekhnika, Mezhved. Nauchno-tekhnicheskii Sbornik, 1 (1966), 37–43, Abs: Ref. Zh. Mat., no. 6V206 (1967) Google Scholar[20] A. Sh. Bloh and , G. S. Neverov, On a method of synthesis of graph-diagrams for algorithms, Dokl. Akad. Nauk BSSR, 8 (1964), 568–571, no. 9 MR0169752 (29:6996) Google Scholar[21] A. Sh. Blokh and , A. G. Gorelik, The synthesis of algorithmic flow charts for a general tactical problemVychislitelnaya Tekhnika v Mashinostroenii, Izdat. Akad. Nauk BSSR, Minsk, 1966, 44–50 Google Scholar[22] A. M. Bogomolov, Methods for minimizing Boolean functions through the use of graph theory, K. Novym Uspekham Sovetskoi Nauki, Tezisy i Soobshcheniya Nauchnoi Konferentsii, Donetsk, 1966, 205–206 Google Scholar[23] D. N. Bolotin, The use of directed weighted flow graphs for the evaluation of transfer ratios, Radiotekhnika, 19 (1964), , Trans.: Telecommunications and Radio Engineering, Pt. 2, 19 (1964), no. 8, pp. 73–76 Google Scholar[24] D. N. Bolotin, Generalized graphs and their use in the analysis of radio circuits, Radiotekhnika, 20 (1965), , Trans.: Telecommunications and Radio Engineering, Pt. 2, 20 (1965), pp. 80–84 Google Scholar[25] D. N. Bolotin, Feedback and generalized graphs, Radiotekhnika, 21 (1966), , Trans.: Telecommunications and Radio Engineering, Pt. 2, 21(1966), no. 5, pp. 125–127 Google Scholar[26] V. B. Borshchev and , F. Z. Rokhlin, Recording of the graph in the memory of a computer for a retrieval algorithm of a partial subgraph of a graph, Informatsionnye Sistemy, Izdat. Inst. Nauchnoi Informatsii Akad. Nauk SSSR, Moscow, 1964, 55–64, Abs: CCAT, no. 9, p. 134 Google Scholar[27] M. D. Breido, The structure of the graph of a linear autonomous network, Izv. V. U.Z., Radiofizika, 10 (1967), 1022–1028, Trans.: Soviet Radiophysics, 10 (1967), no. 7, (Faraday Press, New York, 1967) to appear; Abs: Ref. Zh. Mat., no. l V270 (1968) Google Scholar[28] A. L. Brudno, Limits and bounds for reducing the selection of alternatives, Prob. Kiber, (1963), 141–150 Google Scholar[29] V. N. Burkov, The cut method in transport nets, Tekhnicheskaya Kibernetika (Sbornik), Izdat. Nauka, Moscow, 1965, 287–294, Abs: Ref. Zh. Mat., no. 8V158 (1966); Abs: Cyb. Abs., no. 8, p. 9 (1966) Google Scholar[30] V. N. Burkov and , S. E. Lovetskii, Maximal flow through a generalized transport network, Avt. i Telem., 26 (1965), 2163–2169, Trans.: A. & R. C., 26 (1965), no. 12, pp. 2090–2095; Abs: Ref. Zh. Mat., no. 5V234 (1966); Abs: MR, 34, p. 182; Abs: Cyb. Abs., no. 5, pp. 12–13 (1966) Google Scholar[31] V. N. Burkov, A problem in decomposing graphsKibernetiku—na Sluzhbu Kommunizmu, Vol. 4, Izdat. Energiya, Moscow-Leningrad, 1967, 41–55 Google Scholar[32] A. V. butrimenko, Searching for the shortest path in a varying graph, Izv. A.N. Tekh. Kib., (1964), 55–58, Trans.: Eng. Cyber., no. 6, pp. 50–53 (1964); Abs: Ref. Zh. Mat., no. 6V145 (1965) Google Scholar[33] A. V. Butrimenko and , V. G. Lazarev, Systems for seeking optimal message transmission paths, Prob. Per. Inform., 1 (1965), 80–87, Trans.: Prob. Inf. Trans., 1 (1965), no. 1, pp. 58–62; Abs: Ref. Zh. Mat., no. 11V155 (1965); Abs: CCAT, no. 9, p. 41 Google Scholar[34] G. P. Butsan and , L. P. Varvak, The problem of games on a graphAlgebra i Matematicheskaya Logika (Sbornik), Izdat. Kievskovo Universiteta, Kiev, 1966, 122–138, Abs: Ref. Zh. Mat., no. 7V210 (1967); Abs: MR, 34, no. 7399 Google Scholar[35] D. M. Chausovskii, Open systems on graphs, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 2 (1967), 105–116, Abs: Ref. Zh. Mat., no. 4V255 (1968) MR0373772 (51:9972) Google Scholar[36] Ya. Ya. Dambit, The existence of strong bases of directed graphs and some programming problems, Avt. i Vych. Tekh., (1963), 69–79 Google Scholar[37] Ya. Ya. Dambit, Trees of connected graphsLatv. Matematicheskii Ezhegodnik, 1965, Izdat. Zinatne, Riga, 1966, 337–345, Abs: MR, 35, p. 279 Google Scholar[38] Ya. Ya. Dambit, Laying out a graph on a planeLatv. Matematicheskii Ezhegodnik, 1965, Izdat. Zinatne, Riga, 1966, 79–93, Abs: MR, 34, p. 1242; Abs: Ref. Zh. Mat., no. 10V226 (1967) Google Scholar[39] E. G. Davydov, Automorphisms of finite graphs, Izdat. VINITI, Moscow, 1965, Abs: Ref. Zh. Mat., no. 7A245 (1965) Google Scholar[40] E. G. Davydov, Finite graphs and their automorphisms, Problemy Kibernet. No., 17 (1966), 27–39, Trans. JPRS, no. 40026 (1967) MR0211898 (35:2773) Google Scholar[41] E. G. Davydov, Graph-groups of automorphisms of finite graphs, Ukrain. Mat. Z., 18 (1966), 111–115, Abs: MR, 34, p. 439; Abs: Ref. Zh. Mat., no. 6V205 (1967) MR0202625 (34:2487) Google Scholar[42] E. B. Dynkin and , V. A. Uspenskii, Multicolor Problems, Matematicheskie Besedy, Gostekhizdat, Moscow, 1952, Pt. 1; Trans.: Mathematische Unterhaltungen I: Mehrfahrenprobleme, Deutscher Verlag der Wissenschaften (Berlin, 1955); Trans.: Multicolor Problems, Heath and Co. (Boston, 1963); Abs: MR, 17, p. 772; Abs: Ref. Zh. Mat., no. 4, no. 2860K (1956) Google Scholar[43] E. N. Efimova, properties of linguistic control graphs, Kiber., 2 (1966), 97–101, Trans.: Cyber., 2 (1966), no. 4, pp. 178–186; Trans.: JPRS, no. 39103 Google Scholar[44] G. V. Epifanov, Reductin of a plane graph to an edge by star-triangle transformations, Dokl. Akad. Nauk SSSR, 166 (1966), 19–22, Trans.: Sov. Math., 7(1966), no. 1, pp. 13–17; Abs: MR, 34, p. 213 MR0201337 (34:1221) Google Scholar[45] V. L. Epshtein, Applications of the theory of graphs to the description and analysis of information flow patterns in control systems, Avt. i Telem., 26 (1965), 1403–1409, Trans.: A. & R.C., 26 (1965), no. 8, pp. 1378–1383; Abs: CCAT, no. 12, p. 106; Abs: Cyb. Abs., no. 1, p. 90 (1966) Google Scholar[46] Yu. M. Ermolev, Shortest admissible paths, I, Kiber., 2 (1966), 88–95, Trans.: Cyber., 2 (1966), no. 3, pp. 74–79; Abs: Ref. Zh. Mat., no. 7V284 (1967) Google Scholar[47] Yu. M. Ermolev and , N. I. Rosina, The solution of multinetwork transportation problems, Dopovidi Akad. Nauk UkrSSR, (1966), 585–588, Abs: Ref. Zh. Mat., no. 12V293 (1966) Google Scholar[48] A. P. Ershov, Operator algorithms, I, Prob. Kiber., (1960), 5–48, Trans.: Prob. Cyber., 3 (1962), pp. 697-763; Abs: Ref. Zh. Mat., no. 3A102 (1961) Google Scholar[49] A. P. Ershov and , G. I. Kozhuhin, Estimates of the chromatic number of connected graphs, Dokl. Akad. Nauk SSSR, 142 (1962), 270–273, Trans.: Sov. Math., 3 (1962), no. 1, pp. 50–53; Abs: Ref. Zh. Mat., no. 9A167 (1962) MR0140445 (25:3865) Google Scholar[50] A. P. Ersov, Operator algorithms. II. (A description of the fundamental constructions of programming), Problemy Kibernet. No., 8 (1962), 211–233, Abs: Ref. Zh. Mat., no. 10V381 (1963) MR0182175 (31:6398) Google Scholar[51] A. P. Ersov, Reduction of the problem of memory allocation in programming to the problem of coloring the vertices of graphs, Dokl. Akad. Nauk SSSR, 142 (1962), 785–787, Trans.: Sov. Math., 3 (1962), no. 1, pp. 163–165; Abs: Ref. Zh. Mat., no. 11V249 (1962) MR0135691 (24:B1736) Google Scholar[52] E. V. Evreinov and , Yu. G. Kosarev, Homogeneous general-purpose computing systems of high productivity, Izdat. Nauka, Novosibirsk, 196691ff, Review: Soviet Cybernetics Technology, no. XI, RAND Corporation, Rep. RM-5551-PR, Santa Monica, California, 1967; Trans. (partial): Soviet Cybernetics—Recent News Item, no. 5, pp. 8–19, RAND Corporation, Santa Monica, California, 1967 Google Scholar[53] V. A. Evstigneev, A time transportation problem in graph theory.mlang(Russian), Dokl. Akad. Nauk SSSR, 157 (1964), 814–815, Trans.: Sov. Phys. Dokl., 9 (1965), no. 8, pp. 628–629; Abs: MR, 29, p. 620; Abs: Ref. Zh. Mat., no. 11V257 (1964) MR0165977 (29:3257) Google Scholar[54] V. A. Evstigneev, A time transportation problem for two-pole networks, Diskret. Analiz. No., 2 (1964), 12–22, Abs: MR, 30, p. 2983; Abs: Ref. Zh. Mat., no. 11 V258 (1964) MR0172764 (30:2983) Google Scholar[55] V. A. Evstigneev, Multiterminal transportation networks, Disk. Anal., (1965), 28–36, Abs: Ref. Zh. Mat., no. 8V159 (1966) Google Scholar[56] V. A. Evstigneev, A problem in counter-transports, Disk. Anal., (1965), 69–76, Abs: Cyb. Abs., no. 7, p. 13 (1966) Google Scholar[57] V. A. Evstigneev, The optimal weight of network elements, Prob. Kiber., (1966), 219–223, Trans.: JPRS, no. 40026 (1967); Abs: MR, 35, p. 963; Abs: Ref. Zh. Mat., no. 4V269 (1967) Google Scholar[58] V. A. Evstigneev, A time transportation problem for multiterminal nets, Disk. Anal., (1966), 9–34, Abs: Cyb. Abs., no. 3, p. 19 (1967) Google Scholar[59] Yu. K. Filippov, Mathematics and $\cdots$ the canals on Mars, Priroda, (1966), 104–105, Abs: Ref. Zh. Mat., no. 3V219 (1967) Google Scholar[60] V. V. Firsov, On isometric embedding of a graph into a Boolean cube, Kibernetika (Kiev), 1965 (1965), 95–96, Trans.: Cyber., 1(1965), no. 6, pp. 112-113; Abs: MR, 35, p. 278 MR0210614 (35:1500) Google Scholar[61] I. P. Freidzon, Some problems of optimal design and the analysis of the reliability of navigational control systems using graph and modelling theory on a computer, Third All-Union Conference on Automatic Control, Paper 174, Odessa, 1965, Sept. Google Scholar[62] O. T. Geraskin, Methods for determining the 2-trees of a graph in electrical network topology, Izv. Akad. Nauk SSSR, Energetika i Transport, (1967), 106–112, Abs: Ref. Zh. Mat., no. 3V266 (1968) Google Scholar[63] G. I. Gershengorin, Some algorithms for the evaluation of network diagrams, Stroitelnoe Proizvodstvo, (1966), 24–33 Google Scholar[64] V. V. Glagolev, An upper estimate of the length of a cycle in the n-dimensional unit cube, Diskret. Analiz No., 6 (1966), 3–7 MR0194351 (33:2561) Google Scholar[65] L. M. Gluskin, Transitive semigroups of transformations, Dokl. Akad. Nauk SSSR, 129 (1959), 16–18, no. 1 MR0108544 (21:7260) Google Scholar[66] L. M. Gluskin, Semi-groups of isotone transformations, Uspehi Mat. Nauk, 16 (1961), 157–162 MR0131486 (24:A1336) Google Scholar[67] L. M. Gluskin, Semigroups of transformations, Uspehi Mat. Nauk, 17 (1962), 233–240, (abstract of doctoral dissertation); Abs: Ref. Zh. Mat., no. 6A202 (1963) MR0140956 (25:4369) Google Scholar[68] L. M. Gluskin, On dense embeddings, Mat. Sb. (N.S.), 61 (103) (1963), 175–206, no. 2 MR0152593 (27:2570) Google Scholar[69] M. K. Goldberg, Applications of the method of contractions to strongly connected graphsPerv. Narodn. Matem. Konf. Molod., Part II, Izdat. Institute Mathematiki Akad. Nauk UkrSSR, Kiev, 1965, 155–161, Abs: MR, 33, p. 932 Google Scholar[70] M. K. Goldberg, Some applications of the operation of contraction to strongly connected graphs, Uspehi Mat. Nauk, 20 (1965), 203–205, Abs: MR, 34, p. 213 MR0201339 (34:1223) Google Scholar[71] M. K. Goldberg, On the stable equivalences of finite graphs, Dopovīdī Akad. Nauk Ukraïn. RSR, 1965 (1965), 1009–1011, (in Ukrainian); Abs: MR, 33, p. 10; Abs: Ref. Zh. Mat., no. 2A362 (1966) MR0191837 (33:64) Google Scholar[72] M. K. Goldberg, The diameter of a strongly connected graph, Dokl. Akad. Nauk SSSR, 170 (1966), 767–769, no. 4; Trans.: Sov. Math., 7 (1966), no. 5, pp. 1267–1270; Abs: MR, 34, p. 439; Abs: Ref. Zh. Mat., no. 4V184 (1967) MR0202626 (34:2488) Google Scholar[73] L. I. Golovina, Graphs and their applications, Matem. v Shkole, (1965), 4–15, Abs: Ref. Zh. Mat., no. 1A408 (1966) Google Scholar[74] V. A. Gorbatov, The synthesis of graphs of one class, and their application to the solution of certain cybernetics problems, Kibernetika (Sbornik), Izdat. Nauka, Moscow, 1967, 287–301 Google Scholar[75] V. A. Gorelik and , M. S. Shtilman, On a method of solving a network transportation problem, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 1137–1142, no. 6; Trans.: USSR Comp. Math., 4 (1964), no. 6, pp. 233–242 MR0172697 (30:2916) Google Scholar[76] E. Ya. Grinberg and , I. G. Ilzinya, Coloring the vertices of undirected graphs, Avt. i Vychisl. Tekh, (1964), 143–153, Abs: Ref. Zh. Mat., no. 8A304 (1966) Google Scholar[77] V. S. Grinberg and , Yu. I. Lyubich, Bounds on the number of states arising in connection with the determination of graphs, Abstracts of Brief Scientific Communications, International Congress of Mathematicians, 13, Moscow, 1966, 16–17, (in English) Google Scholar[78] V. S. Grinberg, Determination of systems of graphs and the synthesis of finite automata, Sibirsk. Mat. Ž., 7 (1966), 1259–1267, no. 6; Trans.: Siberian Math. Journal, 7 (1966), no. 6, pp. 994–1000; Abs: Ref. Zh. Mat., no. 4V187 (1967); Abs: CCAT, no. 50, p. 4 MR0231667 (37:7220) Google Scholar[79] V. S. Grinberg and , A. D. Korshunov, On asymptotic behavior of the maximum weight of a finite tree, Problemy Peredači Informacii, 2 (1966), 96–99, Trans.: JPRS, no. 35672; Trans. Prob. Inf. Trans., 2 (1966), no. 1, to appear MR0192952 (33:1177) Google Scholar[80] E. Ya. Grinberg and , Ya. Ya. Dambit, Some properties of graphs containing circuits, Latv. Matematicheskii Ezhegodnik, 1965, Riga, 1966, 65–70, Abs: MR, 34, p. 1366; Abs: Ref. Zh. Mat., no. 10V221 (1967) Google Scholar[81] F. G. Guseinov, et al., Mathematical methods for the optimal scheduling of repairs of the basic equipment of electric power stations, Izv. Akad. Nauk AzerbSSR, (1967), 50–54 Google Scholar[82] I. G. Ilzinya, Finding the largest complete subgraph of a given graph, Avt. i Vychisl. Tekh., (1965), 43–48, Abs: Ref. Zh. Mat., no. 11V217 (1966) Google Scholar[83] I. G. Ilzinya, The problem of selecting wire colorings, Avt. i Vychisl. Tekh., (1965), 161–163 Google Scholar[84] I. G. Ilzinya, Finding the cliques of a graph, Avtomat. i Vyčisl. Tehn., (1967), 7–11, Trans.: Automation and Computer Engineering, 1 (1967), no. 2, to appear; Abs: Ref. Zh. Mat., no. 11V222 (1967) MR0297463 (45:6519) Google Scholar[85] O. A. Ivanova, On direct powers of unary algebras, Vestnik Moskov. Univ. Ser. I Mat. Meh., 1964 (1964), 31–38 MR0164916 (29:2207) Google Scholar[86] V. K. Kabylov, Moore and Mealy graphs, Izv. Akad. Nauk UzSSR, Seriya Tekhnicheskikh Nauk, (1965), 17–22, Abs: Ref. Zh. Mat., no. 3V193 (1966) Google Scholar[87] A. M. Kalmanovich, Semigroups of partial endomorphisms of a graph, Dopovidi Akad. Nauk Ukraïn. RSR, 1965 (1965), 147–150, no. 2; Abs: MR, 31, p. 49; Abs: Ref. Zh. Mat., no. 8A185 (1965) MR0175988 (31:264) Google Scholar[88] A. M. Kalmanovich, The semigroups of one-to-one endomorphisms of a graph, Vsesoyuznyi Nauchnyi Simposium Obshchei Algebre, Izdat. Tartu. Gos. Univ., Tartu, 1966, 42–43, Abs: MR, 33, p. 1276 Google Scholar[89] A. M. Kalmanovich, Densely imbedded ideals of semigroups of multivalued partial endomorphisms of a graph, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A, 1967 (1967), 406–410, Abs: MR, 35, p. 1024 MR0214684 (35:5533) Google Scholar[90] Ya. Ya. Kalninsh, The number of ways of coloring the branches of a tree and a multitree, Kiber., Simposium Obshchei Algebra, Izdat. Tartu. Gos. Univ., Tartu, 1966, 42–43, Abs: MR, 33, p. 1276 Google Scholar[91] A. V. Kalyaev, et al., Application of the methods of graph theory to the synthesis of potential systems, Izv. Akad. Nauk Tekh. Kib., (1965), 65–69, Trans.: Eng. Cyb., no. 4, pp. 62–67 (1965); Abs: Ref. Zh. Mat., no. 5V203 (1966); Abs: Cyb. Abs., no. 5, p. 8 (1966) Google Scholar[92] S. P. Kartasheva, The rational coding of automata with the aid of canonic graphs, I, Izv. Akad. Nauk Tekh. Kib., (1967), 88–98, Trans.: Eng. Cyb., no. 6, pp. 91–105 (1967) Google Scholar[93] B. O. Kasimov, The problem of determining the number of structures of information networks without redundancy, Izv. Akad. Nauk AzerbSSR, (1966), 126–133, Abs: Ref. Zh. Mat., no. 7V207 (1967) Google Scholar[94] B. O. Kasimov, The problem of determining the number of data-network forms having redundancy in one channel, Izv. Akad. Nauk AzerbSSR, (1967), 49–55 Google Scholar[95] A. K. Kelmans, The number of trees in a graph, I, Avt. i Telem., 26 (1965), 2194–2204, Trans.: A. & R. C., 26 (1965), no. 12, pp. 2118–2129; Abs: MR, 34, p. 736; Abs: Ref. Zh. Mat., no. 7A330 (1966) Google Scholar[96] A. K. Kelmans, Some problems of network reliability analysis, Avt. i Telem., 26 (1965), 567–574, Trans.: A. & R.C., 26 (1965), no. 3, pp. 564–573 Google Scholar[97] A. K. Kelmans, The number of trees in a graph, II, Avt. i Telem., 27 (1966), 56–65, Trans.: A. & R.C., 27 (1966), no. 2, pp. 233–241; Abs: MR, 34,p. 736; Abs: Ref. Zh. Mat., no. 7A331 (1966) Google Scholar[98] A. K. Kelmans, The connectivity of probabilistic nets, Avt. i Telem., 28 (1967), 98–116, Trans.: A. & R.C., 28 (1967), no. 3, pp. 444–460; Abs: Ref. Zh. Mat., no. 8V329 (1967) Google Scholar[99] A. K. Kelmans, The construction on the shortest connecting networkKibernetika i Upravlenie (Sbornik), Izdat. Nauka, Moscow, 1967, 115–130, Abs: MR, 36, p. 492 Google Scholar[100] A. K. Kelmans, The metric properties of treesKibernetika i Upravlenie (Sbornik), Izdat. Nauka, Moscow, 1967, 98–107, Abs: MR, 35, p. 748 Google Scholar[101] A. K. Kelmans, The number of trees in a graphKibernetika (Sbornik), Izdat. Nauka, Moscow, 1967, 271–286 Google Scholar[102] A. K. Kelmans, The problems of analyzing "large" graphs, Upravlenie Proisvodstvom Trudy III Vsesoyuznovo Soveshchaniya po Avtomaticheskomy Upravleniyu (Tekhnicheskaya Kibernetika), 20–26 Sept., 1965, Odessa, Izdat. Nauka, Moscow, 1967, 191–201 Google Scholar[103] A. K. Kelmans, Properties of the characteristic polynomial of a graphKibernetika-na Sluzhbu Kommunismu, 4, Izdat. Energiya, Moscow-Leningrad, 1967, 27–41, Abs: Ref. Zh. Mat., no. 4V265 (1968) Google Scholar[104] A. D. Kharkevich and , V. P. Shvalb, An analysis of telephone connection networks corresponding to non-series-parallel graphs, Prob. Per. Inform., (1961), 70–78 Google Scholar[105] V. L. Kharchenko, A computer method of path design, Vychisl. Sis., (1963), 32–40, Trans.: Comp. El. Sys., 1(1966), pp. 236–243; Abs: CCAT, no. 8, p. 30 Google Scholar[106] V. Ya. Khasilev, Elements of the theory of hydraulic nets, Izv. Akad. Nauk SSSR, Energiya i Transport, (1964), 69–88, Abs: Ref. Zh. Mat., no. 3V129 (1965) Google Scholar[107] L. A. Khidzer, Some combinatorial properties of dyadic trees, Zh. Vychisl. Mat. i Mat. Fiz., 6 (1966), 389–394, Trans.: USSR Comp. Math., 6 (1966), no. 2, pp. 283–290; Abs: Ref. Zh. Mat., no. 11V209 (1966) Google Scholar[108] Tui Khoang, Graphs and transport problems, Sibirsk. Mat. Z., 4 (1963), 426–445, no. 2; Abs: MR, 27, p. 451; Abs: Ref. Zh. Mat., no. 11V428 (1963) MR0152362 (27:2342) Google Scholar[109] N. P. Khomenko and , O. N. Gavrilyuk, Extraction of subgraphs of a certain type from a given graph, Ukrain. Mat. Z., 18 (1966), 117–122, Abs: MR, 34, p. 213; Abs: Ref. Zh. Mat., no. 1V161 (1967) MR0201342 (34:1226) Google Scholar[110] N. P. Khomenko, Some problems in topological graph theory, Abstracts of Brief Scientific Communications, International Congress of Mathematicians, 13, Moscow, 1966, 31–, (in English) Google Scholar[111] D. N. Kiknadze, The analysis of the structure of parallel algorithms that are realized on an iterative computing system, Vychislitelnye Sistemy, Trudy Simposiuma, Izdat. Nauka, Novosibirsk, 1967, 89–96, Abs: CCAT, no. 57, p. 22 Google Scholar[112] V. V. Kiryukhin, Optimum connection structures in communication networks, Prob. Per. Inform., 1 (1965), 95–100, Trans.: Prob. Inf. Trans., 1 (1965), no. 2, pp. 72–76 Google Scholar[113] V. V. Kiryukhin, The problem of optimizing the structure of communication networks, Avt. i Telem., 26 (1965), 2214–2220, Trans.: A. & R.C. 26 (1965), no. 12, pp. 2139–2147; Abs: Cyb. Abs., no. 7, p. 21 (1966) Google Scholar[114] V. A. Kisel, Construction and analysis of directed graphs on the basis of n-terminal network theory, Izv. V.U.Z., Radiotekhnika, 8 (1965), 291–299, Trans.: Soviet Radio Engineering, 8 (1965), no. 3, pp. 201–206 Google Scholar[115] V. V. Kleshchov, The analysis of automatic control systems with the aid of transfer networks (the method of graphs), Avtomatika, no. 4, Izdat. Institut Kibernetiki Akad. Nauk UkrSSR, Kiev, 1965, 87–93, (in Ukrainian) Google Scholar[116] B. S. Kochkarev, A graph determined on a set of vertices of the unit n-dimensional cube, Itog. Nauchnaya Konferentsiya Kazansk. Universiteta za 1963 Goda, Sektsiya Matem., Kiber., i Theorii Veroyat. Mekhan., Kazan, 1964, 94–96 Google Scholar[117] V. K. Korobkov and , R. E. Krichevskii, Some algorithms for solving the "traveling salesman" problemMatematicheskie Modeli i Metody Optimalnovo Planirovaniya, Izdat. Nauka, Novosibirsk, 1966, 106–108, Abs: Ref. Zh. Mat., no. 1V315 (1967) Google Scholar[118] V. P. Kozyrev, Some extremal characteristics of graphs, Third All-Union Conference on Automatic Control, Paper no. 109, Odessa, 1965, September Google Scholar[119] V. P. Kozyrev, The calculation of functions on networks having a large number of verticesKibernetiku—na Sluzhbu Kommumizmu, Vol. 4, Izdat. Energiya, Moscow-Leningrad, 1967, 51–55, Abs: Ref. Zh. Mat., no. 6V308 (1968) Google Scholar[120] P. E. Krasnushkin, Evolution graphs and their applications to systems of linear equations, Dokl. Akad. Nauk, 165 (1965), 1265–1268, Trans.: Sov. Phys. Dokl., 10 (1966), no. 12, pp. 1138–1141; Abs: MR, 34, p. 1287; Abs: Ref. Zh. Mat., no. 7A342 (1966) ISIGoogle Scholar[121] R. E. Krichevskii, On the realization of functions by superpositions, Probl. Kibernet., 2 (1959), 123–138, Trans.: Prob. Cyber., 2 (1961), pp. 458–477; Abs: MR, 23, p. 288 MR0128577 (23:B1616) Google Scholar[122] L. D. Kudryavtsev, Some mathematical problems in electrical network theory, U.M.N., 3 (1948), 80–118 Google Scholar[123] L. D. Kudryavtsev, The Second International Symposium on Graph Theory, Vol. 33, Vestnik Akad. Nauk SSSR, 10, 1963, 91–92, Abs: Ref. Zh. Mat., 4A2 (1964) Google Scholar[124] A. A. Kurmit, The solution of certain problems of the theory of abstract finite automata by means of graph theory, Avtomat. i Vyčisl. Tehn., 1967 (1967), 10–17, Trans.: Automation and Computer Engineering, 1 (1967), no. 1, to appear MR0286585 (44:3794) Google Scholar[125] A. V. Kuznetsov, Nonrepetitious contact networks and the nonrepetitious superposition of functions in logical algebra, Trudy Mat. Inst. Stek., 51 (1958), 186–225, Abs: MR, 21, no. 6198; Abs: Ref. Zh. Mat., no. 8892 (1959) Google Scholar[126] A. V. Kuznetsov, A property of functions realized by non-planar non-repeating networks., Trudy Mat. Inst. Steklov, 51 (1958), 174–185, Abs: Ref. Zh. Mat., no. 8891 (1959) MR0114781 (22:5600) Google Scholar[127] L. Ja. Leifman and , L. T. Petrova, Some algorithms for analyzing oriented graphs, Vyčisl. Sistemy No., 11 (1964), 101–113, Trans.: Comp. El. Sys., 2(1966), pp. 154–165; Abs: CCAT, no. 11, p. 169; Abs: MR, 29, p. 543; Abs: Ref. Zh. Mat., no. 2A402 (1965) MR0165511 (29:2793) Google Scholar[128] L. Ya. Leifman, An efficient algorithm for subdividing a directed graph into bicomponents, Kiber., 2 (1966), 19–23, Trans.: JPRS, no. 39539; Trans.: Cyber., 2(1967), no. 5, to appear; Abs: Ref. Zh. Mat., no. 7V198 (1967) Google Scholar[129] V. L. Leonas and , I. B. Motskus, A sequential search method for optimizing systems and net-works having circuits, Avt. i Vychisl. Tekh., (1965), 33–42, Abs: Cyb. Abs., no. 3, p. 129 (1966) Google Scholar[130] V. I. Levenshtein, Self-adaptive automata for decoding messages, Dokl. Akad. Nauk, 141 (1961), 1320–1323, Trans.: Sov. Phys. Dokl., 6 (1962), no. 12, pp. 1042–1045 Google Scholar[131] V. I. Levenshtein, Some properties of coding systems, Dokl. Akad. Nauk, 140 (1961), 1274–1277, Trans.: Sov. Phys. Dokl., 6 (1962), no. 10, pp. 858–860; Abs: Comp. Rev., 4, no. 3658; Trans.: Automation Express, 4 (1962), no. 7, p. 3 ISIGoogle Scholar[132] V. I. Levenshtein, Some properties of coding and self-adjusting automata for decoding messages, Problemy Kibernet. No., 11 (1964), 63–121, Trans.: Automation Express, 7, no. 1, p. 22; Abs: MR, 29, p. 1055; Abs: CCAT, no. 4, p. 29; Trans.: Foreign Technology Division, U.S. Air Force Systems Command, no. FTD-MT-67-126 MR0168396 (29:5659) Google Scholar[133] A. A. Levin, On the maximal length of cycles of a certain class in the n-dimensional unit cube, Diskret. Analiz No., 6 (1966), 51–61, Abs: MR, 34, p. 214; Abs: Ref. Zh. Mat., no. 11V199 (1966) MR0201344 (34:1228) Google Scholar[134] L. M. Likhtenbaum, A duality theorem for ordinary graphs, U.M.N., 13 (1958), 185–190, Abs: MR, 21, p. 970 Google Scholar[135] L. M. Likhtenbaum, Traces of powers of the junction matrix of vertices and the junction matrix of edges in a non-singular graph, Izv. Vysš. Učebn. Zaved. Matematika, 1959 (1959), 154–163, Abs: MR, 25, p. 575 MR0139543 (25:2975) Google Scholar[136] L. M. Likhtenbaum, New theorems on graphs, Sibirsk. Mat. Ž, 3 (1962), 561–568, Abs: MR, 25, p. 972 MR0141613 (25:5011) Google Scholar[137] L. M. Likhtenbaum, Closed paths on connected graphs, Abstracts of Brief Scientific Communications, International Congress of Mathematicians, 13, Moscow, 1966, 24–25, (in English) Google Scholar[138] E. A. Loginov, On regular three-color coloring, Dokl. Akad. Nauk SSSR, 163 (1965), 569–572, Abs: MR, 33, p. 833; Abs: Ref. Zh. Mat., no. 12A349 (1965) MR0196732 (33:4918) Google Scholar[139] N. N. Lominadze, et al., The solution of some scheduling problems using network diagrams, Soob. Akad. Nauk GruzSSR, 43 (1966), 675–681 Google Scholar[140] N. N. Lominadze, Methods of balancing assembly lines, Soob. Akad. Nauk GruzSSR, 47 (1967), 137–142 Google Scholar[141] D. Sh. Lundina, A stronger form of Rado's theorem, Sibirsk. Mat. Ž., 7 (1966), 718–719, Trans.: Siberian Mathematical Journal, 7, no. 3, p. 573; Abs: MR, 33, p. 453; Abs: Ref. Zh. Mat., no. 8V208 (1967) MR0194358 (33:2568) Google Scholar[142] O. B. Lupanov, An asymptotic estimate of the number of graphs and networks with n edges, Probl. Kibernet., 4 (1960), 5–21, Trans.: Prob. Cyber., 4 (1962), pp. 1137–1155; Abs: MR, 26, p. 1057; Trans.: (partial) Automation Express, 3 (1961), no. 9, p. 1 MR0148056 (26:5565) Google Scholar[143] O. B. Lupanov, Asymptotic e
Referência(s)