Revisão Revisado por pares

Myointimal Hyperplasia: Pathogenesis and Implications. 1. In Vitro Characteristics

1991; Wiley; Volume: 15; Issue: 1 Linguagem: Inglês

10.1111/j.1525-1594.1991.tb00758.x

ISSN

1525-1594

Autores

Thomas A. Painter,

Tópico(s)

Aortic aneurysm repair treatments

Resumo

Artificial OrgansVolume 15, Issue 1 p. 42-55 Myointimal Hyperplasia: Pathogenesis and Implications. 1. In Vitro Characteristics Thomas A. Painter, Corresponding Author Thomas A. Painter Division of Vascular Surgery, Northwestern University, Chicago, Illinois, U.S.A.Thomas A. Painter, M.D, 8780 Golf Road, Suite 300, Des Plaines, IL60016, U.S.A.Search for more papers by this author Thomas A. Painter, Corresponding Author Thomas A. Painter Division of Vascular Surgery, Northwestern University, Chicago, Illinois, U.S.A.Thomas A. Painter, M.D, 8780 Golf Road, Suite 300, Des Plaines, IL60016, U.S.A.Search for more papers by this author First published: February 1991 https://doi.org/10.1111/j.1525-1594.1991.tb00758.xCitations: 19AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Imparato AM, Bracco A., Kim GE, Zeff R. Intimal and neointimal fibrous proliferation causing failure of arterial reconstructions. Surgery 1972; 6: 1007 – 17. Google Scholar 2 Szilagyi ED, Elliott JP, Hageman JH, Smith RF, Dall'olmo LA. Biologic fate of autogenous vein implants as arterial substitutes: clinical, angiographic and histopathologic observations in femoro–politeal operations for atherosclerosis. Ann Surg 1973; 178: 232 – 46. 10.1097/00000658-197309000-00002 PubMedWeb of Science®Google Scholar 3 Echave V., Koomick AR, Haimour M., Jacobson JH. Intimal hyperplasia as a complication of the use of the polytet–rafluoroethylene graft for femoral–popliteal bypass. Surgery 1979; 86: 791 – 6. CASPubMedWeb of Science®Google Scholar 4 Veith FJ, Gupta S., Daly V. Management of early and late thrombosis of expanded polytetrafluoroethylene (PTFE) femoropopliteal bypass grafts: favorable prognosis with appropriate reoperation. Surgery 1980; 87: 581 – 7. CASPubMedWeb of Science®Google Scholar 5 Veith FJ, Gupta SK. Expanded polytetrafluoroethylene vascular grafts. In: RB Rutherford, ed. Vascular surgery, Philadelphia : WB Saunders, 1984: 394 – 404. Google Scholar 6 Grondin CM, Meere C., Castonquay V., Lepage G., Grondin P. Progressive and late obstruction of an aortocoronary venous bypass graft. Circulation 1971; 43: 698. 10.1161/01.CIR.43.5.698 CASPubMedWeb of Science®Google Scholar 7 Unni KK, Kottke BA, Titus JL, Frye RL, Wallace RB, Brown AL. Pathologic changes in aortocoronary saphenous vein grafts. Am J Cardiol 1974; 34: 526. 10.1016/0002-9149(74)90122-2 CASPubMedWeb of Science®Google Scholar 8 Vlodaven Z., Edwards JE. Pathologic changes in aortic–coronary arterial saphenous vein grafts. Circulation 1971; 44: 719. 10.1161/01.CIR.44.4.719 PubMedGoogle Scholar 9 Curtis JJ, Stoney WS, Alford WC, Burrys GR, Thomas CS. Intimal hyperplasia, a cause of radial artery aortocoronary bypass graft failure. Ann Thorac Surg 1975; 20: 628 – 35. 10.1016/S0003-4975(10)65754-2 CASPubMedWeb of Science®Google Scholar 10 Das MB, Hertzer NR, Ratliff NB, O'Hara PJ, Beven EG. Recurrent carotid stenosis: a five–year series of 65 reoperations. Ann Surg 1985: 202: 28 – 35. 10.1097/00000658-198507000-00004 CASPubMedWeb of Science®Google Scholar 11 Kent KM, Bonow RI, Rosing DR, et al. Improved myocardial function during exercise after successful percutaneous transluminal angioplasty. N Engl J Med 1982; 306: 441 – 446. 10.1056/NEJM198202253060801 CASPubMedWeb of Science®Google Scholar 12 Jutzy KR, Berte LE, Alderman EL, Ratts J., Simpson JB. Coronary restenosis rates in consecutive patient series one year post–successful angioplasty (Abstract). Circulation 1982; 66(Suppl II): 331. Google Scholar 13 Gruentizig R. Results of coronary angioplasty and implications for the future. Am Heart J 1982; 103: 779 – 83. 10.1016/0002-8703(82)90486-0 PubMedWeb of Science®Google Scholar 14 Austin GE, Ratliff NB, Hollman J., Tabel S., Phillips DF. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 1985; 6: 369 – 75. 10.1016/S0735-1097(85)80174-1 PubMedWeb of Science®Google Scholar 15 Bowles CR, Olcott C., Parker RL, Lombard C., Mehigan JT, Walter JF. Diffuse arterial narrowing as a result of intimal proliferation: a delayed complication of embolectomy with Fogarty balloon catheter. J Vase Surg 1988; 7: 487 – 94. 10.1067/mva.1988.avs0070487 CASPubMedWeb of Science®Google Scholar 16 Schwarcz TH, Dobrin PB, Mrkuicka BS, Skowron L., Cole MB Jr. Early myointimal hyperplasia after balloon catheter embolectomy: effect of shear forces and multiple withdrawals. J Vase Surg 1988; 7: 495 – 9. 10.1067/mva.1988.avs0070495 CASPubMedWeb of Science®Google Scholar 17 Sottiurai VS., Yao JST, Flinn WR. Intimal hyperplasia and neointima: an ultrastructural analysis of thrombosed grafts in humans. Surgery 1983; 93: 809 – 7, 1983. CASPubMedWeb of Science®Google Scholar 18 Imparato AM, Baumann FG, Pearson J., Kim GE, Davidson T., Ibrahim I. Electron microscopic studies of experimentally produced fibromuscular arterial lesions. Surg Gynecol Obstet 1974; 139: 497 – 504. CASPubMedWeb of Science®Google Scholar 19 Logerfo FW, Quist WC, Nowak MP, Crawshaw HM, Hau–denschild CC. Downstream anastomotic hyperplasia: a mechanism of failure in Dacron arterial grafts. Ann Surg 1983; 197: 479 – 83. 10.1097/00000658-198304000-00018 CASPubMedWeb of Science®Google Scholar 20 Laden AMK, Sinclair RA. Thickening of arterial intima in rat cardiac allografts: a light and electron microscopic study. Am J Pathol 1971; 263: 69 – 84. Google Scholar 21 Karayannacos PE, Hostetler JR, Bond MG, Kako SG, Williams RA, Kilman JW, Vasko JS. Late failure in vein grafts: mediating factors in subendothelial fibromuscular hyperplasia. Ann Surg 1976; 187: 183 – 8. 10.1097/00000658-197802000-00016 PubMedWeb of Science®Google Scholar 22 Murday AJ, Gershlick AH, Syndercombe–Court YD, Led–ingham SJ, Betts NJ, Lewis CT, Mills PG. Intimal hyperplasia in arterial autogenous vein grafts: a new animal model. Cardiovasc Res 1983; 17: 445 – 51. 10.1093/cvr/17.8.446 Web of Science®Google Scholar 23 Clowes AW, Gown AM, Hanson SR, Reidy MA. Mechanisms of arterial graft failure 1. Role of cellular proliferation in early healing of PTFE prostheses. Am J Pathol 1985; 118: 43 – 54. CASPubMedWeb of Science®Google Scholar 24 Lawrie GM, Lie JT, Morris GC, Beazley HL. Vein graft patency and intimal proliferation after aortocoronary bypass: early and long–term angiopathologic correlations. Am J Cardiol 1976; 38: 856 – 62. 10.1016/0002-9149(76)90798-0 CASPubMedWeb of Science®Google Scholar 25 Scott JE, Dorling J. Differential staining of acidic glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solution. Histochemie 1965; 5: 222 – 33. 10.1007/BF00306130 Web of Science®Google Scholar 26 Wight TN, Hascall VC. Proteoglycans in primate arteries. III. Characterization of the proteoglycans synthesized by arterial smooth muscle cells in culture. J Cell Biol 1983; 96: 167. 10.1083/jcb.96.1.167 CASPubMedWeb of Science®Google Scholar 27 Wight TN, Ross R. Proteoglycans in primate arteries II. Synthesis and secretion of glycosaminoglycans by arterial smooth muscle cells in culture. J Cell Biol 1975; 67: 675. 10.1083/jcb.67.3.675 CASPubMedWeb of Science®Google Scholar 28 Chamley–Campbell J., Campbell GR, Ross R. The smooth muscle cell in culture. Physiol Rev 1979; 59: 1 – 61. 10.1152/physrev.1979.59.1.1 CASPubMedWeb of Science®Google Scholar 29 Florentin RA, Nam SC, Lee KT, Thomas WA. Increased mitotic activity in aortas of swine after 3 days of cholesterol feeding. Arch Pathol 1969; 88: 463 – 9. CASPubMedWeb of Science®Google Scholar 30 Chamley JH, Campbell GR, McConnell JD, GroschelStewart U. Comparison of vascular smooth muscle cells from adult human, monkey, and rabbit in primary culture and in subculture. Cell Tissue Res 1977; 177: 503 – 22. 10.1007/BF00220611 CASPubMedWeb of Science®Google Scholar 31 Fritz KE, Jarmolych J., Daoud AS. Association of DNA synthesis and apparent differentiation of aortic smooth muscle cells in vitro. Exp Mol Pathol 1970; 12: 354 – 62. 10.1016/0014-4800(70)90066-3 CASPubMedWeb of Science®Google Scholar 32 Rossi GL, Alroy J., Rothenmund S. Morphological studies of cultured swine aorta media explants. Virchows Arch 1973 533 – 44. Google Scholar 33 Chamley–Campbell JH, Campbell GR, Ross R. Phenotypic–dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol 1981; 89: 379 – 83. 10.1083/jcb.89.2.379 PubMedWeb of Science®Google Scholar 34 Jarmolych JA, Daoud AS, Landau KE, Fritz KE, McEl–vene E. Aortic media explants. Cell proliferation and production of mucopolysaccharides, collagen and elastic tissue. Exp Mot Pathol 1981; 9: 171 – 88. 10.1016/0014-4800(68)90033-6 Web of Science®Google Scholar 35 Ross R., Klebanof SJ. The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J Cell Biol 1971; 50: 159 – 71. 10.1083/jcb.50.1.159 CASPubMedWeb of Science®Google Scholar 36 Ross R. The smooth muscle cell. 11. Growth of smooth muscle cell in culture and formation of elastic fibers. J Cell Biol 1971; 50: 172 – 86. 10.1083/jcb.50.1.172 PubMedWeb of Science®Google Scholar 37 Burke JM, Ross R. Collagen synthesis by monkey arterial smooth muscle cells during proliferation and quiescence in culture. Exp Cell Res 1977; 107: 387. 10.1016/0014-4827(77)90360-3 CASPubMedWeb of Science®Google Scholar 38 Layman DL, Epstein EH, Dodson RF, Titus J. Biosynthesis of Type I and III collagens by cultured smooth muscle cells from human aorta. Proc Natl Acad Sci USA 1977; 74: 671 – 5. 10.1073/pnas.74.2.671 CASPubMedWeb of Science®Google Scholar 39 Burke JM, Balian G., Ross R., Bornstein P. Synthesis of Types I and II procollagen and collagen by aortic smooth muscle cells in vitro. Biochemistry 1977; 16: 32 – 43. 10.1021/bi00633a031 Web of Science®Google Scholar 40 Layman DL, Titus JL. Synthesis of Type I collagen by human smooth muscle cells in vitro. Lab Invest 1975; 33: 103 – 7. CASPubMedWeb of Science®Google Scholar 41 Fowler S., Shio H., Wolinsky H. Subcellular fractionation and morphology of calf aortic smooth muscle cells. Studies on whole aorta, aortic explants, and subcultures grown under different conditions. J Cell Biol 1977; 75: 166 – 84. 10.1083/jcb.75.1.166 CASPubMedWeb of Science®Google Scholar 42 Beldekas JC, Gerstenfeld L., Sonenshein GE, Franzblau C. Cell density and estradiol modulation of procollagen type III in cultured calf smooth muscle cells. J Biol Chem 1982; 257: 12252 – 6. CASPubMedWeb of Science®Google Scholar 43 Narayanan AS, Sandberg LB, Ross R., Layman DL. The smooth muscle cell HI eastin synthesis in arterial smooth muscle cell culture. J Cell Biol 1976; 68: 411 – 9. 10.1083/jcb.68.3.411 CASPubMedWeb of Science®Google Scholar 44 Namiki O., Faris B., Tschoop F., Fuglistaller P., Hollander W., Franzblau C., Schmid K. Synthesis of glycosaminoglycans by cultured rabbit smooth muscle cells. Biochemistry 1980; 19: 1900 4. 10.1021/bi00550a026 Web of Science®Google Scholar 45 Florini JR, Roberts SB. A serum–free medium for the growth of muscle cells in culture. In Vitro 1979; 15: 983 – 92. 10.1007/BF02619157 CASPubMedWeb of Science®Google Scholar 46 Ross R., Kariya B. Morphogenesis of vascular smooth muscle in atherosclerosis in cell culture. In: Handbook of physiology: circulation. Bethesda , MD : American Physiology Society 1980: 69 – 91. Web of Science®Google Scholar 47 Ross R., Glomset J., Kariya B., Harker L. A platelet dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 1974; 71: 1207 – 10. 10.1073/pnas.71.4.1207 PubMedWeb of Science®Google Scholar 48 Ross R., Vogel A., Glomset J., Kariya B., Raines E., Rivest MJ. Platelet factor–the principle stimulant in serum for DNA synthesis of cells in culture. J Cell Biol 1977; 75: 86a. Google Scholar 49 Kohler N., Lipton A. Platelets as a source of fibroblast growth–promoting activity. Exp Cell Res 1974: 87: 297 – 301. 10.1016/0014-4827(74)90484-4 PubMedWeb of Science®Google Scholar 50 Weinstein R., Stemerman MB, Maciag T. Hormonal requirements for growth of arterial smooth muscle cells in vitro: an endocrine approach to atherosclerosis. Science 1981; 212: 818 – 20. 10.1126/science.7013068 CASPubMedWeb of Science®Google Scholar 51 Libby P., O'Brien K. Culture of quiescent arterial smooth muscle cells in a defined serum–free medium. J Cell Phvsiol 1983; 115: 217 – 23. 10.1002/jcp.1041150217 PubMedWeb of Science®Google Scholar 52 Antoniades HN. Human platelet–derived growth factor (PDGF): purification of PDGF–1 and PDGF–II and separation of their reduced sub–units. Proc Natl Acad Sci USA 1981; 78: 7314 – 7. 10.1073/pnas.78.12.7314 CASPubMedWeb of Science®Google Scholar 53 Antoniades HN, Hunkapillar MW. Human platelet derived growth factor (PDGF): amino–terminal amino–acid sequence. Science 1983; 220: 963 – 5. 10.1126/science.6844921 CASPubMedWeb of Science®Google Scholar 54 Johnsson A., Heldin CH, Wasteson A., Westermark B., Duel TF, Huang JS, Seeburg PH, Gray A., Ullrich A., Scrace G., Stroobant P., Waterfield MD. The c–sis gene encodes a precursor of the P chain of platelet derived growth factor. EMBO J 1984; 3: 921 – 8. 10.1002/j.1460-2075.1984.tb01908.x CASPubMedWeb of Science®Google Scholar 55 Stroobant P., Waterfield MD. Purification and properties of porcine platelet derived growth factor. EMBO J 1984; 3: 2963 – 7. 10.1002/j.1460-2075.1984.tb02241.x CASPubMedWeb of Science®Google Scholar 56 Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN. Simian sarcoma virus onc Gene, v–sis, is derived from the gene (or genes) encoding a platelet derived growth factor. Science 1983; 221: 275 – 7. 10.1126/science.6304883 CASPubMedWeb of Science®Google Scholar 57 Waterfield MD, Scrace GT, Whittle NJ, Stroobant P., Johnsson A., Wasteson A., Westermark B., Heldin C–H, Huang JS, Deuel TF. Plate–derived growth factor is structurally related to the putative transforming protein p28SIS of simian sarcoma virus. Nature 1983; 304: 35 – 9. 10.1038/304035a0 CASPubMedWeb of Science®Google Scholar 58 Kaplan DR, Chao FC, Stiles CD, Antoniade HN, Scher CD. Platelet a–granules contain a growth factor for fibroblasts. Blood 1979; 53: 1043 – 52. CASPubMedWeb of Science®Google Scholar 59 Witte LD, Kaplan KL, Nossel HL, Lages BA, Weiss HJ, Goodman DS. Studies of the release from human platelets of the growth factor for cultured human arterial smooth muscle cells. Circ Res 1978; 42: 402 – 9. 10.1161/01.RES.42.3.402 CASPubMedWeb of Science®Google Scholar 60 Leibovich SJ, Ross R. A macrophage–dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol 1976; 84: 501 – 13. PubMedWeb of Science®Google Scholar 61 Gajdusel C., DiCorleto P., Ross R., Schwartz SM. An endothelial cell derived growth factor. J Cell Biol 1980; 85: 467 – 72. 10.1083/jcb.85.2.467 PubMedWeb of Science®Google Scholar 62 DiCorleto PE, Bowen–Pope DF. Cultured endothelial cells produce a platelet–derived growth factor–like protein. Proc Natl Acad Sci USA 1983; 80: 1919 – 23. 10.1073/pnas.80.7.1919 CASPubMedWeb of Science®Google Scholar 63 Seifert RA, Schwartz SM, Bowern–Pope DF. Developmentally regulated production of platelet derived growth factorlike molecules. Nature 1984; 311: 699 – 71. 10.1038/311669a0 Web of Science®Google Scholar 64 Nilsson J., Sjolund M., Palmberg L., Thyberg J., Heldin CH. Arterial smooth muscle cells in primary culture produce a platelet derived growth factor–like protein. Proc Natl Acad Sci USA 1985; 82: 4418 – 22. 10.1073/pnas.82.13.4418 CASPubMedWeb of Science®Google Scholar 65 Ross R., Vogel A. Platelet derived growth factor. Cell 1978; 14: 203 – 10. 10.1016/0092-8674(78)90107-1 CASPubMedWeb of Science®Google Scholar 66 Antoniades HN, Williams LT. Human platelet derived growth factor: Structure and function. Fed Proc 1983; 42: 2630 – 4. CASPubMedWeb of Science®Google Scholar 67 Rutherford RB, Ross R. Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate. J Cell Biol 1976; 69: 196 – 203. 10.1083/jcb.69.1.196 CASPubMedWeb of Science®Google Scholar 68 Bernstein LR, Antoniades HN, Zetter BR. Migration of cultured vascular cells in response to plasma and platelet derived factors. J Cell Sci 1982; 56: 71 – 82. 10.1242/jcs.56.1.71 CASPubMedWeb of Science®Google Scholar 69 Grotendorst GR, Seppa HEJ, Kleinman HK, Martin GR. Attachment of smooth muscle cells to collagen and their migration toward platelet derived growth factor. Proc Natl Acad Sci USA 1981; 78: 3669 – 72. 10.1073/pnas.78.6.3669 CASPubMedWeb of Science®Google Scholar 70 Grotendorst GR, Chang T., Seppa HEJ, Kleinman HK, Martin GR. Platelet derived growth factor is a chemoattractant for vascular smooth muscle cells. J Cell Physiol 1982; 113: 261 – 6. 10.1002/jcp.1041130213 CASPubMedWeb of Science®Google Scholar 71 Deuel TF, Senior RM, Huang JS, Griffin GL. Chemotaxis of monocytes and neutrophils to platelet derived growth factor. J Clin Invest 1982; 69: 1046 – 9. 10.1172/JCI110509 PubMedWeb of Science®Google Scholar 72 Williams LT., Tremble P., Antoniades HN. Platelet–derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissocia–ble. Proc Natl Acad Sci USA 1982; 79: 5867 – 70. 10.1073/pnas.79.19.5867 CASPubMedWeb of Science®Google Scholar 73 Pledger WS, Stiles CD, Antoniades HN, Scher CD. An ordered sequence of events is required before BALB/C–3T3 cells become committed to DNA synthesis. Proc Nail Acad Sci USA 1978; 75: 2839 – 43. 10.1073/pnas.75.6.2839 CASPubMedWeb of Science®Google Scholar 74 Bowen–Pope DF, Ross R. Platelet derived growth factor II. Specific binding to cultured cells. J Biochem 1982; 257: 5161 – 68. Google Scholar 75 Clemmons DR. Interaction of circulating cell–derived and plasma growth factors in stimulating cultured smooth muscle cell replication. J Cell Physiol 1984; 121: 425 – 30. 10.1002/jcp.1041210222 CASPubMedWeb of Science®Google Scholar 76 Birinyi LK, Warner SJC, Salomon RN, Callow AD, Libby P. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: production of a platelet derived growth factor–like mitogen and expression of a gene for a platelet–derived growth factor receptor–a preliminary study. J Vase Surg 1989; 10: 157 – 65. 10.1067/mva.1989.0100157 CASPubMedWeb of Science®Google Scholar 77 Clemmons DR. Exposure to platelet–derived growth factor modulates the porcine aortic smooth muscle cell response to somatomedin–C. Endocrinology 1985; 117: 77 – 83. 10.1210/endo-117-1-77 CASPubMedWeb of Science®Google Scholar 78 Clemmons DR. Variables controlling the secretion of a so–matomedin–like peptide by cultured porcine smooth muscle cells. Circ Res 1985; 56: 418 – 26. 10.1161/01.RES.56.3.418 CASPubMedWeb of Science®Google Scholar 79 Zern MA, Swartz E., Giambrone MA, Blumenfeld 00. Ascorbate–generated endogenous extracellular matrix affects cell protein synthesis in calf aortic smooth muscle cells. Exp Cell Res 1985; 160: 307 – 18. 10.1016/0014-4827(85)90178-8 CASPubMedWeb of Science®Google Scholar 80 King GL, Kahn CR, Rechler MM, Nissley SP. Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication–stimulating activity (an insulin–like growth factor) using antibodies to the insulin receptor. J Clin Invest 1980; 66: 130 – 40. 10.1172/JCI109826 CASPubMedWeb of Science®Google Scholar 81 Stout RW, Bierman EL, Ross R. Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ Res 1975; 36: 319 – 27. 10.1161/01.RES.36.2.319 CASPubMedWeb of Science®Google Scholar 82 Nakao J., Ito H., Kanayasu T., Murota S. Stimulatory effect of insulin on aortic smooth muscle cell migration induced by 12–hydroxy–5,8,10,14–eicosatertraenoic acid and its modulation by elevated extracellular glucose levels. Diabetes 1985; 34: 185 – 91. 10.2337/diabetes.34.2.185 CASPubMedWeb of Science®Google Scholar 83 Becker CG, Hajjar DP, Hefton JM. Tobacco constitutes are mitogenic for arterial smooth muscle cells. Am J Pathol 1985; 120: 1 – 5. CASPubMedWeb of Science®Google Scholar 84 Dillon L., Glenn GG, Becker FCG. Induction of cholecystitis and pneumonitis by inhalation of cigarette smoke constituents. Am J Pathol 1982; 109: 253 – 8. CASPubMedWeb of Science®Google Scholar 85 Heyns FA, Eldor A., Vlodauski I., Kaiser N., Fridman R., Panet A. The antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events: studies with vascular smooth muscle cells and endothelial cells. Exp Cell Res 1985; 161; 297 – 306. 10.1016/0014-4827(85)90087-4 CASPubMedWeb of Science®Google Scholar 86 Loesberg C., Wijk RV, Zandbergen J., Van Aken WG, Mourik JA, De Groot PHG. Ceil cycle–dependent inhibition of human vascular smooth muscle cell proliferation by prostaglandin E. Exp Cell Res 1985; 160: 117 – 125. 10.1016/0014-4827(85)90241-1 CASPubMedGoogle Scholar 87 Kawaguchi H., Yasuda H. Platelet–activating factor stimulates prostaglandin synthesis in cultured cells. Hypertension 1986; 8: 192 – 7. 10.1161/01.HYP.8.3.192 CASPubMedWeb of Science®Google Scholar 88 Nemecek GM, Coughlan SR, Handley DA, Moskowitz MA. Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc Natl Acad Sci USA 1986; 83: 674 – 8. 10.1073/pnas.83.3.674 CASPubMedWeb of Science®Google Scholar 89 Libby P., Miao P., Ordovas JM, Schaefer EJ. Lipoproteins increase growth of mitogen–stimulated arterial smooth muscle cells. J Cell Physiol 1985; 124: 1 – 8. 10.1002/jcp.1041240102 CASPubMedWeb of Science®Google Scholar 90 Ross R., Glomset JA. Atherosclerosis and the arterial smooth muscle cell. Science 1973; 180: 1332 – 8. 10.1126/science.180.4093.1332 CASPubMedWeb of Science®Google Scholar 91 Fischer–Dzoga, Fraser R, Wissler RW. Stimulation of proliferation in stationary primary cultures of monkey and rab bit aortic smooth muscle cells. Exp Mol Pathol 1976; 24: 346 – 59. 10.1016/0014-4800(76)90070-8 CASPubMedWeb of Science®Google Scholar 92 Augustyn JM, Fritz KE, Daoud AS, Jarmolych J. Effect of lipoprotein on in vitro synthesis of DNA in aortic tissue. Atherosclerosis 1977; 27: 179 – 88. 10.1016/0021-9150(77)90055-7 CASPubMedWeb of Science®Google Scholar 93 Campbell JH, Popadynee L., Nestel PJ, Campbell G. Lipid accumulation in arterial smooth muscle: influence of phenotype. Atherosclerosis 1983; 47: 279 – 95. 10.1016/0021-9150(83)90059-X CASPubMedWeb of Science®Google Scholar 94 Ronnemaa T. Serum lipoprotein composition, platelet factor and arterial smooth muscle cells. Acta Med Scand (Suppl) 1980; 642: 55 – 65. CASPubMedGoogle Scholar 95 Castellot JJ, Favreau LV, Karnovsky MS, Rosenberg RD. Inhibition of vascular smooth muscle cell growth by endothelial–cell derived heparin: possible role of a platelet endoglycosidase. J Biol Chem 1982; 257: 11256 – 60. CASPubMedWeb of Science®Google Scholar 96 Hoover RL, Rosenberg GR, Haering W., Karnovsky MJ. Inhibition of rat arterial smooth muscle ceil proliferation by heparin. II. In vitro studies. Circ Res 1980; 47: 578 – 83. 10.1161/01.RES.47.4.578 CASPubMedWeb of Science®Google Scholar 97 Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun 1976; 69: 570 – 7. 10.1016/0006-291X(76)90558-1 CASPubMedWeb of Science®Google Scholar 98 Castellot JJ, Wong K., Herman B., Hoover RL, Albertini DF, Wright TC, Caceb BL, Karnovsky MJ. Binding and internalization of heparin by vascular smooth muscle ceils. J Cell Physiol 1985; 124: 13 – 20. 10.1002/jcp.1041240104 CASPubMedWeb of Science®Google Scholar 99 Castellot JJ, Cochran DL, Karnovsky MJ. Effect of heparin on vascular smooth muscle cells. I. Cell metabolism. J Cell Physiol 1985; 124: 21 – 8. 10.1002/jcp.1041240105 CASPubMedWeb of Science®Google Scholar 100 Cochran DL, Castellot JJ, Karnovsky MJ. Effect of heparin on vascular smooth muscle cells. II. Specific protein synthesis. J Cell Physiol 1985; 124: 29 – 36. 10.1002/jcp.1041240106 CASPubMedWeb of Science®Google Scholar 101 Leung DY, Glagov S., Mathews MB. Cyclic stretching stimulates synthesis, of matrix components by arterial smooth muscle cells in vitro. Science 1976; 191: 475 – 7. 10.1126/science.128820 CASPubMedWeb of Science®Google Scholar 102 Dartch PC, Hammerle H., Betz E. Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Acta Anal 1986; 125: 108 – 13. 10.1159/000146146 PubMedWeb of Science®Google Scholar 103 Merrilees MJ, Merrilees MD, Bimbaum PS, Scott PJ. The effect of centrifugal force on glycosaminoglycan production by aortic smooth muscle cells in culture. Atherosclerosis 1977; 27: 259 – 64. 10.1016/0021-9150(77)90034-X CASPubMedWeb of Science®Google Scholar 104 Jaffe EA. Culture and identification of large vessel endothelial cells. In: EA Jaffe, ed. Biology of endothelial cells. Boston : Martinus Nishoff P, 1984: 1 – 13. 10.1007/978-1-4613-2825-4_1 Google Scholar 105 Gimbrone MA, Cotran RS, Folkman J. Human vascular endothelial cells in culture:

Referência(s)
Altmetric
PlumX