Artigo Revisado por pares

Respiration as a Factor in Locomotion of Fishes

1924; University of Chicago Press; Volume: 58; Issue: 655 Linguagem: Inglês

10.1086/279966

ISSN

1537-5323

Autores

Charles M. Breder,

Tópico(s)

Fish biology, ecology, and behavior

Resumo

Previous articleNext article FreeRespiration as a Factor in Locomotion of FishesC. M. Breder, Jr.C. M. Breder, Jr. Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 58, Number 655Mar. - Apr., 1924 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/279966 Views: 92Total views on this site Citations: 43Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Stacy C. Farina, Thomas J. Near, William E. Bemis Evolution of the branchiostegal membrane and restricted gill openings in Actinopterygian fishes, Journal of Morphology 276, no.66 (Feb 2015): 681–694.https://doi.org/10.1002/jmor.20371Yong Zhong, Zheng Li, Ruxu Du The design and prototyping of a wire-driven robot fish with pectoral fins, (Dec 2013): 1918–1923.https://doi.org/10.1109/ROBIO.2013.6739749Lige Zhang, Chuanmeng Niu, Shusheng Bi, Yueri Cai Kinematic model analysis and design optimization of a bionic pectoral fins, (Dec 2013): 2219–2224.https://doi.org/10.1109/ROBIO.2013.6739799Frank Boehm Design Challenges and Considerations for Nanomedical In Vivo Aqueous Propulsion, Surface Ambling, and Navigation, (Dec 2013): 73–172.https://doi.org/10.1201/b15626-5Sanaz Bazaz Behbahani, Jianxun Wang, Xiaobo Tan A dynamic model for robotic fish with flexible pectoral fins, (Jul 2013): 1552–1557.https://doi.org/10.1109/AIM.2013.6584316Li Wen, Tianmiao Wang, Guanhao Wu, Jianhong Liang Quantitative Thrust Efficiency of a Self-Propulsive Robotic Fish: Experimental Method and Hydrodynamic Investigation, IEEE/ASME Transactions on Mechatronics 18, no.33 (Jun 2013): 1027–1038.https://doi.org/10.1109/TMECH.2012.2194719Ki-In Na, In-Bae Jeong, Seungbeom Han, Jong-Hwan Kim Target follwing with a vision sway compensation for robotic fish Fibo, (Dec 2011): 2114–2119.https://doi.org/10.1109/ROBIO.2011.6181604Yuan-lin Guan, Zhi-wei Xu, Hua-feng Li Design of a biomimetic fish caudal drive via Macro Fiber Composite, (Dec 2011): 123–125.https://doi.org/10.1109/SPAWDA.2011.6167207Abhra Roy Chowdhury, Bhuneshwar Prasad, Vinoth Kumar, Rajesh Kumar, S K Panda Design, modeling and open-loop control of a BCF mode bio-mimetic Robotic Fish, (Nov 2011): 226–231.https://doi.org/10.1109/SSRR.2011.6106768Chunlin Zhou, K. H. Low Locomotion planning of biomimetic robotic fish with multi-joint actuation, (Oct 2009): 2132–2137.https://doi.org/10.1109/IROS.2009.5354221Zu Guang Zhang, Norio Yamashita, Akio Yamamoto, Masahiko Gondo, Toshiro Higuchi Modeling and system identification of three-layer structure electrostatic film motors for a robotic fish, (Aug 2009): 2729–2734.https://doi.org/10.1109/ICMA.2009.5244932 Yongshun Zhang, Ming Cong, Dongming Guo, Dianlong Wang Design Optimization of a Bidirectional Microswimming Robot Using Giant Magnetostrictive Thin Films, IEEE/ASME Transactions on Mechatronics 14, no.44 (Aug 2009): 493–503.https://doi.org/10.1109/TMECH.2009.2012851Yu Zhong, C. W. Chong, Chunlin Zhou, Gerald G. L. Seet, K. H. Low Performance predict model for a body and caudal fin (BCF) biomimetics fish robot, (Jul 2009): 1230–1235.https://doi.org/10.1109/AIM.2009.5229755C.W. Chong, Y. Zhong, C.L. Zhou, K.H. Low, G.L.G. Seet, H.B. Lim Can the swimming thrust of BCF biomimetics fish be enhanced?, (Feb 2009): 437–442.https://doi.org/10.1109/ROBIO.2009.4913043Daibing Zhang, K.H. Low, Haibin Xie, Lincheng Shen Advances and Trends of Bionic Underwater Propulsors, (Jan 2009): 13–19.https://doi.org/10.1109/GCIS.2009.458F. Boyer, M. Porez, A. Leroyer, M. Visonneau Fast Dynamics of an Eel-Like Robot—Comparisons With Navier–Stokes Simulations, IEEE Transactions on Robotics 24, no.66 (Dec 2008): 1274–1288.https://doi.org/10.1109/TRO.2008.2006249 Chao Zhou, Zhiqiang Cao, Shuo Wang, Min Tan The dynamic analysis of the backward swimming mode for biomimetic carangiform robotic fish, (Sep 2008): 3072–3076.https://doi.org/10.1109/IROS.2008.4650657 Chao Zhou, Min Tan, Zhiqiang Cao, Shuo Wang, Douglas Creighton, Nong Gu, Saeid Nahavandi Kinematic modeling of a bio-inspired robotic fish, (May 2008): 695–699.https://doi.org/10.1109/ROBOT.2008.4543286Parasar Kodati, Jonathan Hinkle, Aaron Winn, Xinyan Deng Microautonomous Robotic Ostraciiform (MARCO): Hydrodynamics, Design, and Fabrication, IEEE Transactions on Robotics 24, no.11 (Feb 2008): 105–117.https://doi.org/10.1109/TRO.2008.915446K. H. Low Parametric Study of Modular and Reconfigurable Robotic Fish with Oscillating Caudal Fin Mechanisms, (Aug 2007): 123–128.https://doi.org/10.1109/ICMA.2007.4303527K. H. Low, G. L. Gerald Seet, Chunlin Zhou Biomimetic Design and Workspace Study of Compact and Modular Undulating Fin Body Segments, (Aug 2007): 129–134.https://doi.org/10.1109/ICMA.2007.4303528K. H. Low, S. Prabu, Jie Yang, Shiwu Zhang, Yonghua Zhang Design and Initial Testing of a Single-Motor-Driven Spatial Pectoral Fin Mechanism, (Aug 2007): 503–508.https://doi.org/10.1109/ICMA.2007.4303594Parasar Kodati, Jonathan Hinkle, Xinyan Deng Micro Autonomous Robotic Ostraciiform (MARCO): Design and Fabrication, (Apr 2007): 960–965.https://doi.org/10.1109/ROBOT.2007.363109Kimikazu Sugiyama, Kazuo Ishii, Keiichi Kaneto A Ribbon Like Fin Using Electro Conductive Polymer For Precise Motion Control, (Apr 2007): 391–396.https://doi.org/10.1109/UT.2007.370748Zhang Daibing State-of-the-art and Key Technologies of Fish-like Propulsor, (Aug 2006): 1620–1624.https://doi.org/10.1109/CHICC.2006.280788 Bibliography and Further Reading, (Aug 2006): 483–514.https://doi.org/10.2514/5.9781600862502.0483.0514Scott D. Kelly, Ramadev B. Hukkeri Mechanics, Dynamics, and Control of a Single-Input Aquatic Vehicle With Variable Coefficient of Lift, IEEE Transactions on Robotics 22, no.66 (Jan 2006): 1254–1264.https://doi.org/10.1109/TRO.2006.882934A. Willy, K.H. Low Initial experimental investigation of undulating fin, (Jan 2005): 1600–1605.https://doi.org/10.1109/IROS.2005.1545280 Yongshun Zhang, Guangjun Liu Wireless micro biomimetic swimming robot based on giant magnetostrictive films, (Jan 2005): 195–200.https://doi.org/10.1109/ROBIO.2005.246262A. Willy, K.H. Low Development and initial experiment of modular undulating fin for untethered biorobotic AUVs, (Jan 2005): 45–50.https://doi.org/10.1109/ROBIO.2005.246399J. Yu, M. Tan, S. Wang, E. Chen Development of a Biomimetic Robotic Fish and Its Control Algorithm, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 34, no.44 (Aug 2004): 1798–1810.https://doi.org/10.1109/TSMCB.2004.831151M.W. Westneat, D.H. Thorsen, J.A. Walker, M.E. Hale Structure, Function, and Neural Control of Pectoral Fins in Fishes, IEEE Journal of Oceanic Engineering 29, no.33 (Jul 2004): 674–683.https://doi.org/10.1109/JOE.2004.833207J.A. Walker Kinematics and Performance of Maneuvering Control Surfaces in Teleost Fishes, IEEE Journal of Oceanic Engineering 29, no.33 (Jul 2004): 572–584.https://doi.org/10.1109/JOE.2004.833217G.V. Lauder, E.G. Drucker Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces, IEEE Journal of Oceanic Engineering 29, no.33 (Jul 2004): 556–571.https://doi.org/10.1109/JOE.2004.833219P.W. Webb Maneuverability—General Issues, IEEE Journal of Oceanic Engineering 29, no.33 (Jul 2004): 547–555.https://doi.org/10.1109/JOE.2004.833220M. Sfakiotakis, D.M. Lane, J.B.C. Davies Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering 24, no.22 (Apr 1999): 237–252.https://doi.org/10.1109/48.757275K.A. Harper, M.D. Berkemeier, S. Grace Modeling the dynamics of spring-driven oscillating-foil propulsion, IEEE Journal of Oceanic Engineering 23, no.33 (Jul 1998): 285–296.https://doi.org/10.1109/48.701206S.D. Kelly, R.J. Mason, C.T. Anhalt, R.M. Murray, J.W. Burdick Modelling and experimental investigation of carangiform locomotion for control, (Jan 1998): 1271–1276 vol.2.https://doi.org/10.1109/ACC.1998.703619C.C. Lindsey Form, Function, and Locomotory Habits in Fish, (Jan 1978): 1–100.https://doi.org/10.1016/S1546-5098(08)60163-6 EunJung Kim, Youngil Youm Simulation study of fish swimming modes for aquatic robot system, (): 39–44.https://doi.org/10.1109/ICAR.2005.1507388 Eunjung Kim, Youngil Youm Simulation Study of Fish Swimming Modes for Aquatic Robot System, (): 3330–3335.https://doi.org/10.1109/ROBOT.2005.1570624Helmut Albrecht Zur Stammesgeschichte einiger Bewegungsweisen bei Fischen, untersucht am Verhalten von Haplochromis (Pisces, Cichlidae), Zeitschrift für Tierpsychologie 23, no.33 (Apr 2010): 270–302.https://doi.org/10.1111/j.1439-0310.1966.tb01697.xWolfgang Wickler Die Stammesgeschichte typischer Bewegungsformen der Fisch-Brustflosse, Zeitschrift für Tierpsychologie 17, no.11 (Apr 2010): 31–66.https://doi.org/10.1111/j.1439-0310.1960.tb00192.x

Referência(s)
Altmetric
PlumX