Artigo Acesso aberto Revisado por pares

High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen

1995; Wiley; Volume: 4; Issue: 9 Linguagem: Inglês

10.1002/pro.5560040922

ISSN

1469-896X

Autores

Boris Turk, Veronika Stoka, Ingemar Björk, Christian Boudier, Gunnar Johansson, Iztok Dolenc, Adrijana C̆olić, Joseph G. Bieth, Vito Türk,

Tópico(s)

Click Chemistry and Applications

Resumo

Protein ScienceVolume 4, Issue 9 p. 1874-1880 ArticleFree Access High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen Boris Turk, Corresponding Author Boris Turk boris.turk@vmk.slu.se Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, Uppsala, Sweden Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaDepartment of Veterinary Medical Chemistry, The Biomedical Center, POB 575, S-751 23 Uppsala, SwedenSearch for more papers by this authorVeronika Stoka, Veronika Stoka Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaSearch for more papers by this authorIngemar Björk, Ingemar Björk Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, Uppsala, SwedenSearch for more papers by this authorChristian Boudier, Christian Boudier INSERM U392, Universite Louis Pasteur de Strasbourg, Illkirch, FranceSearch for more papers by this authorGunnar Johansson, Gunnar Johansson Department of Biochemistry, Uppsala University, The Biomedical Center, Uppsala, SwedenSearch for more papers by this authorIztok Dolenc, Iztok Dolenc Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaSearch for more papers by this authorAdrijana Colic, Adrijana Colic Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaSearch for more papers by this authorJoseph G. Bieth, Joseph G. Bieth INSERM U392, Universite Louis Pasteur de Strasbourg, Illkirch, FranceSearch for more papers by this authorVito Turk, Vito Turk Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaSearch for more papers by this author Boris Turk, Corresponding Author Boris Turk boris.turk@vmk.slu.se Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, Uppsala, Sweden Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaDepartment of Veterinary Medical Chemistry, The Biomedical Center, POB 575, S-751 23 Uppsala, SwedenSearch for more papers by this authorVeronika Stoka, Veronika Stoka Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaSearch for more papers by this authorIngemar Björk, Ingemar Björk Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, Uppsala, SwedenSearch for more papers by this authorChristian Boudier, Christian Boudier INSERM U392, Universite Louis Pasteur de Strasbourg, Illkirch, FranceSearch for more papers by this authorGunnar Johansson, Gunnar Johansson Department of Biochemistry, Uppsala University, The Biomedical Center, Uppsala, SwedenSearch for more papers by this authorIztok Dolenc, Iztok Dolenc Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaSearch for more papers by this authorAdrijana Colic, Adrijana Colic Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaSearch for more papers by this authorJoseph G. Bieth, Joseph G. Bieth INSERM U392, Universite Louis Pasteur de Strasbourg, Illkirch, FranceSearch for more papers by this authorVito Turk, Vito Turk Department of Biochemistry & Molecular Biology, J. Stefan Institute, Jamova 39, Ljubljana, SloveniaSearch for more papers by this author First published: September 1995 https://doi.org/10.1002/pro.5560040922Citations: 23AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract Human low-molecular-weight kininogen (LK) was shown by fluorescence titration to bind two molecules of ca-thepsins L and S and papain with high affinity. By contrast, binding of a second molecule of cathepsin H was much weaker. The 2:1 binding stoichiometry was confirmed by titration monitored by loss of enzyme activity and by sedimentation velocity experiments. The kinetics of binding of cathepsins L and S and papain showed the two proteinase binding sites to have association rate constants kass, I = 10.7-24.5 × 106 M−1 s−1 and kass, 2 = 0.83-1.4 × 106 M−1 s−1. Comparison of these kinetic constants with previous data for intact LK and its separated domains indicate that the faster-binding site is also the tighter-binding site and is present on domain 3, whereas the slower-binding, lower-affinity site is on domain 2. These results also indicate that there is no appreciable steric hindrance for the binding of proteinases between the two binding sites or from the kininogen light chain. References Abrahamson M, Barrett AJ, Salvesen G, Grubb A. 1986. Isolation of six cysteine proteinase inhibitors from human urine. J Biol Chem 261: 11282– 11289. Anderson KP, Heath EC. 1985. The relationship between rat major acute phase protein and the kininogens. J Biol Chem 260: 12065– 12071. Auerswald EA, Rössler D, Mentele R, Assfalg-Machleidt I. 1993. Cloning, expression and characterization of human kininogen domain 3. FEBS Lett 321: 93– 97. Barrett AJ, Fritz H, Grubb A, Isemura S, Järvinen M, Katunuma N, Machleidt W, Müller-Esterl W, Sasaki M, Turk V. 1986a Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem J 236: 312. Barrett AJ, Rawlings ND, Davies ME, Machleidt W, Salvesen G, Turk V. 1986b. Cysteine proteinase inhibitors of cystatin superfamily. In: AJ Barrett, G Salvesen, eds. Proteinase inhibitors. Amsterdam: Elsevier, pp 515– 569. Bieth JG. 1984. In vivo significance of kinetic constants of protein proteinase inhibitors. Biochem Med 32: 387– 397. Björk I, Alriksson E, Ylinenjärvi K. 1989. Kinetics of binding of chicken cystatin to papain. Biochemistry 28: 1568– 1573. Björk I, Ylinenjärvi K. 1989. Interaction of chicken cystatin with inactivated papains. Biochem J 260: 61– 68. Blumberg S, Schechter I, Berger A. 1970. The purification of papain by affinity chromatography. Eur J Biochem 15: 97– 102. Bode W, Engh R, Musil D, Thiele U, Huber R, Karshikov A, Brzin J, Kos J, Turk V. 1988. The 2.0 Å X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J 7: 2593– 2599. Bradford HN, Jameson BA, Adam AA, Wassell RP, Colman RW. 1993. Contiguous binding and inhibitory sites on kininogens required for inhibition of platelet calpain. J Biol Chem 268: 26546– 26551. DeLa Cadena RA, Colman RW. 1991. Structure and functions of human kininogens. Trends Pharmacol Sci 12: 272– 275. Dolenc I, Ritonja A, Čolič A, Podobnik M, Ogrinc T, Turk V. 1992. Bovine cathepsins S and L: Isolation and amino acid sequences. Biol Chem Hoppe-Seyler 373: 407– 412. Gounaris AD, Brown MA, Barrett AJ. 1984. Human plasma α-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment. Biochem J 221: 445– 452. Higashiyama S, Ohkubo I, Ishiguro H, Kunimatsu M, Sawaki K, Sasaki M. 1986. Human high molecular weight kininogen as a thiol proteinase inhibitor: Presence of the entire inhibition capacity in the native form of heavy chain. Biochemistry 25: 1669– 1675. Higashiyama S, Ohkubo H, Ishiguro H, Sasaki M, Matsuda T, Nakamura R. 1987. Heavy chain of human high molecular weight and low molecular weight kininogens binds calcium ions. Biochemistry 26: 7450– 7458. Jiang Y, Müller-Esterl W, Schmaier AH. 1992. Domain 3 of kininogens contains a cell-binding site and a site that modifies thrombin activation of platelets. J Biol Chem 267: 3712– 3717. Kageyama J, Kitamura N, Ohkubo H, Nakanishi S. 1985. Differential expression of the multiple forms of rat prekininogen mRNAs after acute inflammation. J Biol Chem 260: 12060– 12064. Kellerman J, Lottspeich F, Henschen A, Müller-Esterl W. 1986. Completion of the primary structure of human high-molecular-mass kininogen. The amino acid sequence of the entire heavy chain and evidence for its evolution by gene triplication. Eur J Biochem 154: 471– 478. Kitamura N, Kitagawa H, Fukushima D, Takagaki T, Miyata T, Nakanishi S. 1985. Structural organization of the human kininogen gene and a model for its evolution. J Biol Chem 260: 8610– 8617. Lenarčič B, Gabrijelčič D, Rozman B, Drobnič-Koäorok M, Turk V. 1987. Human cathepsin B and cysteine proteinase inhibitors (CPIs) in inflammatory and metabolic joint diseases. Biol Chem Hoppe-Seyler 369 (Suppl): 257– 261. Lindahl P, Abrahamson M, Björk I. 1992. Interaction of recombinant human cystatin C with the cysteine proteinases papain and actinidin. Bio-chem J 281: 49– 55. Lindahl P, Alriksson E, Jörnvall H, Björk I. 1988. Interaction of the cysteine proteinase inhibitor chicken cystatin with papain. Biochemistry 27: 5074– 5082. Machleidt W, Ritonja A, Popovic T, Kotnik M, Brzin J, Turk V, Machleidt I, Müller-Esterl W. 1986. Human cathepsins B, H and L: Characterization by amino acid sequences and some kinetics of inhibition by the kininogens. In: V Turk, ed. Cysteine proteinases and their inhibitors. Berlin/New York: Walter de Gruyter. pp 3– 18. Morrison JF. 1982. The slow-binding and slow, tight-binding inhibition of enzyme-catalysed reactions. Trends Biochem Sci 7: 102– 105. Müller-Esterl W, Fritz H, Machleidt W, Ritonja A, Brzin J, Kotnik M, Turk V, Kellermann J, Lottspeich F. 1985. Human plasma kininogens are identical with alpha cysteine proteinase inhibitors. Evidence from immunological, enzymological and sequence data. FEBS Lett 182: 310– 314. Müller-Esterl W, Iwanaga S, Nakanishi S. 1986. Kininogens revisited. Trends Biochem Sci 11: 336– 339. Müller-Esterl W, Johnson DA, Salvesen G, Barrett A.J. 1988. Human kininogens. Methods Enzymol 163: 240– 256. Müller-Esterl W, Vohle-Timmermann M, Boos B, Dittman B. 1982. Purification and properties of human low molecular weight kininogen. Biochim Biophys Acta 706: 145– 152. Ohkubo I, Kurachi K, Takasawa T, Shiowaka H, Sasaki M. 1984. Isolation of human cDNA for α2-thiol protease inhibitor and its identity with low molecular weight kininogen. Biochemistry 23: 5691– 5697. Okamoto H, Greenbaum LM. 1983. Isolation and structure of T-kinin. Bio-chem Biophys Res Commun 112: 710– 708. Olson ST, Halvorson HR, Björk I. 1991. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem 266: 6342– 6352. Popovič T, Brzin J, Ritonja A, Svetic B, Turk V. 1993. Rapid affinity chromatographic method for the isolation of human cathepsin H. J Chromatogr 615: 243– 249. Roberts DD, Lewis SD, Ballou DP, Olson ST, Shafer JA. 1986. Reactivity of small thiolate anions and cysteine-25 in papain towards methyl methanethiosulfonate. Biochemistry 25: 5595– 5601. Ryley HC. 1979. Isolation and partial characterization of a thiol proteinase inhibitor from human plasma. Biochem Biophys Res Commun 89: 871– 879. Salvesen G, Parkes C, Abrahamson M, Grubb A, Barrett AJ. 1986. Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem J 234: 429– 434. Schachmann HK. 1959. Ultracentrifugation in biochemistry. New York: Academic Press. Sueyoshi T, Enjyoji K, Shimada T, Kato H, Iwanaga S, Bando Y, Kominami E, Katunuma N. 1985. A new function of kininogens as thiol-proteinase inhibitors: Inhibition of papain and cathepsins B, H and L by bovine, rat and human plasma kininogens. FEBS Lett 182: 193– 195. Sueyoshi T, Hara A, Shimada T, Kimura M, Morita T, Kato H, Iwanaga S. 1988. Molecular interaction of bovine kininogen and its derivatives with papain. J Biochem 104: 200– 206. Takagaki Y, Kitamura N, Nakanishi S. 1985. Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens: Primary structures of two human prekininogens. J Biol Chem 260: 8601– 8609. Tanford C. 1961. Physical chemistry of macromolecules. New York/London: John Wiley & Sons, Inc. pp 346– 389. Tian WX, Tsou CL. 1982. Determination of the rate constant of enzyme modification using the substrate reaction in the presence of the modifier. Biochemistry 21: 1028– 1032. Turk B, Čolič A, Stoka V, Turk V. 1994a Kinetics of inhibition of bovine cathepsin S by bovine stefin B. FEBS Lett 339: 155– 159. Turk B, Dolenc I, Turk V, Bieth JG. 1993a Kinetics of the pH-induced in-activation of human cathepsin L. Biochemistry 32: 375– 380. Turk B, Dolenc I, Žerovnik E, Turk D, Gubenšek F, Turk V. 1994b Human cathepsin B is a metastable enzyme stabilized by specific ionic interactions associated with the active site. Biochemistry 33: 14800– 14806. Turk B, Križaj I, Kralj B, Dolenc I, Popovič T, Bieth JG, Turk V. 1993b Bovine stefin C, a new member of the stefin family. J Biol Chem 268: 7323– 7329. Turk B, Ritonja A, Björk I, Stoka V, Dolenc I, Turk V. 1995. Identification of bovine stefin A, a novel protein inhibitors of cysteine proteinases. FEBS Lett 360: 101– 105. Turk V, Brzin J, Longer M, Ritonja A, Eropkin M, Borchart U, Machleidt W. 1983. Protein inhibitors of cysteine proteinases III. Amino acid sequence of cystatin from chicken egg white. Hoppe-Seyler's Z Physiol Chem 364: 1487– 1496. Vogel R, Assfalg-Machleidt I, Esterl A, Machleidt W, Müller-Esterl W. 1988. Proteinase-sensitive regions in the heavy chain of low molecular weight kininogen map to the inter-domain junctions. J Biol Chem 263: 12661– 12668. Wachtvogel YT, DeLa Cadena RA, Kunapuli SP, Rick L, Miller M, Schultze RL, Altieri DC, Edgington TS, Colman RW. 1994. High molecular weight kininogen binds to Mac-1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5). J Biol Chem 269: 19307– 19312. Weisel JW, Nagaswami C, Woodhead JL, DeLa Cadena RA, Page JD, Colman RW. 1994. The shape of high molecular weight kininogen. Organization into structural domains, changes with activation, and interactions with prekallikrein, as determined by electron microscopy. J Biol Chem 269: 10100– 10106. Ylinenjärvi K, Prasthofer TW, Martin NC, Björk I. 1995. Interaction of cysteine proteinases with recombinant kininogen domain 2, expressed in Escherichia coli. FEBS Lett 357: 309– 311. Yphantis DA. 1964. Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3: 297– 317. Zucker S, Buttle DJ, Nicklin MJH, Barrett AJ. 1985. The proteolytic activities of chymopapain, papain and papaya proteinase III. Biochim Biophys Acta 828: 196– 204. Zvonar T, Kregar I, Turk V. 1979. Isolation of cathepsin Band a- N-benzoy-larginine- β-naphtylamide hydrolase by covalent chromatography on activated thiol Sepharose. Croat Chem Acta 52: 411– 416. Citing Literature Volume4, Issue9September 1995Pages 1874-1880 ReferencesRelatedInformation

Referência(s)