Artigo Revisado por pares

An Attempt to Frame a Working Hypothesis of the Cause of Glacial Periods on an Atmospheric Basis

1899; University of Chicago Press; Volume: 7; Issue: 6 Linguagem: Inglês

10.1086/608449

ISSN

1537-5269

Autores

T. C. Chamberlin,

Tópico(s)

Geology and Paleoclimatology Research

Resumo

Previous articleNext article FreeAn Attempt to Frame a Working Hypothesis of the Cause of Glacial Periods on an Atmospheric BasisT. C. ChamberlinT. C. ChamberlinPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The Journal of Geology Volume 7, Number 6Sep. - Oct., 1899 Article DOIhttps://doi.org/10.1086/608449 Views: 168 Citations: 140Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Julien Babault, Jean Van Den Driessche, María Charco Plateau Uplift, Regional Warping, and Subsidence, (Jan 2022): 223–269.https://doi.org/10.1016/B978-0-12-818234-5.00119-XPatricia F. McDowell, L. Allan James Fluvial System Responses to Climate Change: History, Research and Theory, (Jan 2022): 340–371.https://doi.org/10.1016/B978-0-12-818234-5.00211-XDavid Moore, Matthias Heilweck, Peter Petros Diagnosing the Problem, (Mar 2022): 1–34.https://doi.org/10.1007/978-3-030-94846-7_1Michael A. Summerfield Plate tectonics and macrogeomorphology, Geological Society, London, Memoirs 91 (Dec 2021): M58-2021-12.https://doi.org/10.1144/M58-2021-12Simon J. Dadson Geomorphology and Earth system science, Geological Society, London, Memoirs 25 (Dec 2021): M58-2021-9.https://doi.org/10.1144/M58-2021-9Zhengliang Yu, Ni Yan, Guangjian Wu, Tianli Xu, Fei Li Chemical weathering in the upstream and midstream reaches of the Yarlung Tsangpo basin, southern Tibetan Plateau, Chemical Geology 559 (Jan 2021): 119906.https://doi.org/10.1016/j.chemgeo.2020.119906Alfred E. Hartemink From a Farm on Loess—Emil Truog, (Sep 2021): 71–101.https://doi.org/10.1007/978-3-030-71135-1_3S. M. Sosdian, T. L. Babila, R. Greenop, G. L. Foster, C. H. Lear Ocean Carbon Storage across the middle Miocene: a new interpretation for the Monterey Event, Nature Communications 11, no.11 (Jan 2020).https://doi.org/10.1038/s41467-019-13792-0Robert G. Hilton, A. Joshua West Mountains, erosion and the carbon cycle, Nature Reviews Earth & Environment 1, no.66 (Jun 2020): 284–299.https://doi.org/10.1038/s43017-020-0058-6Philip A. E. Pogge von Strandmann, Kevin W. Burton, Sophie Opfergelt, Eydís S. Eiríksdóttir, Melissa J. Murphy, Arni Einarsson, Sigurdur R. Gislason Hydrothermal and Cold Spring Water and Primary Productivity Effects on Magnesium Isotopes: Lake Myvatn, Iceland, Frontiers in Earth Science 8 (Apr 2020).https://doi.org/10.3389/feart.2020.00109T. T. Isson, N. J. Planavsky, L. A. Coogan, E. M. Stewart, J. J. Ague, E. W. Bolton, S. Zhang, N. R. McKenzie, L. R. Kump Evolution of the Global Carbon Cycle and Climate Regulation on Earth, Global Biogeochemical Cycles 34, no.22 (Jan 2020).https://doi.org/10.1029/2018GB006061N. Ying, D. Zhou, Z. G. Han, Q. H. Chen, Q. Ye, Z. G. Xue Rossby Waves Detection in the CO2 and Temperature Multilayer Climate Network, Geophysical Research Letters 47, no.22 (Jan 2020).https://doi.org/10.1029/2019GL086507Vance T. Holliday, Patrick J. Bartlein, Andrew C. Scott, and Jennifer R. Marlon Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago, Parts 1 and 2: A Discussion, The Journal of Geology 128, no.11 (Dec 2019): 69–94.https://doi.org/10.1086/706264M.D. Simmons, K.G. Miller, D.C. Ray, A. Davies, F.S.P. van Buchem, B. Gréselle Phanerozoic Eustasy, (Jan 2020): 357–400.https://doi.org/10.1016/B978-0-12-824360-2.00013-9Pietro Sternai, Luca Caricchi, Claudia Pasquero, Eduardo Garzanti, Douwe J. J. Hinsbergen, Sébastien Castelltort Magmatic Forcing of Cenozoic Climate?, Journal of Geophysical Research: Solid Earth 125, no.11 (Jan 2020).https://doi.org/10.1029/2018JB016460Grzegorz Racki Volcanism as a prime cause of mass extinctions: Retrospectives and perspectives, (Jan 2020): 1–34.https://doi.org/10.1130/2020.2544(01)Philip A.E. Pogge von Strandmann, Daniela N. Schmidt, Noah J. Planavsky, Guangyi Wei, Chloe L. Todd, Karl-Heinz Baumann Assessing bulk carbonates as archives for seawater Li isotope ratios, Chemical Geology 530 (Dec 2019): 119338.https://doi.org/10.1016/j.chemgeo.2019.119338Philip A.E. Pogge von Strandmann, Wesley T. Fraser, Samantha J. Hammond, Gary Tarbuck, Ian G. Wood, Eric H. Oelkers, Melissa J. Murphy Experimental determination of Li isotope behaviour during basalt weathering, Chemical Geology 517 (Jul 2019): 34–43.https://doi.org/10.1016/j.chemgeo.2019.04.020Francis A. Macdonald, Nicholas L. Swanson-Hysell, Yuem Park, Lorraine Lisiecki, Oliver Jagoutz Arc-continent collisions in the tropics set Earth’s climate state, Science 364, no.64366436 (Apr 2019): 181–184.https://doi.org/10.1126/science.aav5300Mingzhao Sun, Weihua Wu, Xiang Ji, Xiangli Wang, Shuyi Qu Silicate weathering rate and its controlling factors: A study from small granitic watersheds in the Jiuhua Mountains, Chemical Geology 504 (Jan 2019): 253–266.https://doi.org/10.1016/j.chemgeo.2018.11.019Joanmarie Del Vecchio, Karl A. Lang, Colin R. Robins, Chris P. McGuire, Edward J. Rhodes Storage and weathering of landslide debris in the eastern San Gabriel Mountains, California, USA: Implications for mountain solute flux, Earth Surface Processes and Landforms 43, no.1313 (Jul 2018): 2724–2737.https://doi.org/10.1002/esp.4427E.M. Stewart, Jay J. Ague Infiltration-driven metamorphism, New England, USA: Regional CO2 fluxes and implications for Devonian climate and extinctions, Earth and Planetary Science Letters 489 (May 2018): 123–134.https://doi.org/10.1016/j.epsl.2018.02.028Jon M. Husson, Shanan E. Peters Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir, Earth and Planetary Science Letters 460 (Feb 2017): 68–75.https://doi.org/10.1016/j.epsl.2016.12.012Jonathan B. Martin Carbonate minerals in the global carbon cycle, Chemical Geology 449 (Jan 2017): 58–72.https://doi.org/10.1016/j.chemgeo.2016.11.029Jacqueline M. Engel, Lin Ma, Peter B. Sak, Jerome Gaillardet, Minghua Ren, Mark A. Engle, Susan L. Brantley Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: New insight from U-series isotopes in weathering rinds, Geochimica et Cosmochimica Acta 195 (Dec 2016): 29–67.https://doi.org/10.1016/j.gca.2016.08.040Oliver Jagoutz, Francis A. Macdonald, Leigh Royden Low-latitude arc–continent collision as a driver for global cooling, Proceedings of the National Academy of Sciences 113, no.1818 (Apr 2016): 4935–4940.https://doi.org/10.1073/pnas.1523667113 Trace Gases Warm the Planet, (Jun 2015): 37–50.https://doi.org/10.1002/9781118897362.ch4Gregory A. Pope Regolith and Weathering (Rock Decay) in the Critical Zone, (Jan 2015): 113–145.https://doi.org/10.1016/B978-0-444-63369-9.00004-5Isaac J. Larsen, David R. Montgomery, Harvey M. Greenberg The contribution of mountains to global denudation, Geology 42, no.66 (Jun 2014): 527–530.https://doi.org/10.1130/G35136.1Isaac J. Larsen, Peter C. Almond, Andre Eger, John O. Stone, David R. Montgomery, Brendon Malcolm Rapid Soil Production and Weathering in the Southern Alps, New Zealand, Science 343, no.61716171 (Feb 2014): 637–640.https://doi.org/10.1126/science.1244908A.F. White, H.L. Buss Natural Weathering Rates of Silicate Minerals, (Jan 2014): 115–155.https://doi.org/10.1016/B978-0-08-095975-7.00504-0D.L. Royer Atmospheric CO2 and O2 During the Phanerozoic: Tools, Patterns, and Impacts, (Jan 2014): 251–267.https://doi.org/10.1016/B978-0-08-095975-7.01311-5M. Pagani, M. Huber, B. Sageman Greenhouse Climates, (Jan 2014): 281–304.https://doi.org/10.1016/B978-0-08-095975-7.01314-0S.L. Brantley, M. Lebedeva, E. Bazilevskaya Relating Weathering Fronts for Acid Neutralization and Oxidation to pCO2 and pO2, (Jan 2014): 327–352.https://doi.org/10.1016/B978-0-08-095975-7.01317-6Roger Revelle Introduction: The Scientific History of Carbon Dioxide, (Mar 2013): 1–4.https://doi.org/10.1029/GM032p0001Eric J. Barron, Warren M. Washington Warm Cretaceous Climates: High Atmospheric CO 2 as a Plausible Mechanism, (Mar 2013): 546–553.https://doi.org/10.1029/GM032p0546Eric J. Barron Studies of Cretaceous Climate, (Mar 2013): 149–157.https://doi.org/10.1029/GM052p0149A.R. Orme 1.12 Denudation, Planation, and Cyclicity: Myths, Models, and Reality, (Jan 2013): 205–232.https://doi.org/10.1016/B978-0-12-374739-6.00012-9J. Babault, J. Van Den Driessche 5.6 Plateau Uplift, Regional Warping, and Subsidence, (Jan 2013): 93–128.https://doi.org/10.1016/B978-0-12-374739-6.00087-7Andrew S. Goudie, Heather A. Viles Weathering and the global carbon cycle: Geomorphological perspectives, Earth-Science Reviews 113, no.1-21-2 (Jun 2012): 59–71.https://doi.org/10.1016/j.earscirev.2012.03.005Willy Viehöver Öffentliche Erzählungen und der globale Wandel des Klimas, (Jan 2012): 173–215.https://doi.org/10.1007/978-3-531-93256-9_6Clive A. Spinage Fire Part I: Introduction and History, (Oct 2011): 251–292.https://doi.org/10.1007/978-3-642-22872-8_6Douglas N. Reusch New Caledonian carbon sinks at the onset of Antarctic glaciation, Geology 39, no.99 (Sep 2011): 807–810.https://doi.org/10.1130/G31981.1Qiang Niu, Feng Lin, Chaoqun Nie, Ling Li Forecast Study of Temperature of Shanghai Base on Energy Consuming Analysis, (Jan 2011): 447–454.https://doi.org/10.1007/978-3-642-23753-9_72Paul F. Hoffman Chapter 2 A history of Neoproterozoic glacial geology, 1871–1997, Geological Society, London, Memoirs 36, no.11 (Nov 2011): 17–37.https://doi.org/10.1144/M36.2J. K. Donaldson, T. J. Wellman, W. L. Oliver Long-term change in thermospheric temperature above Saint Santin, Journal of Geophysical Research: Space Physics 115, no.A11A11 (Nov 2010): n/a–n/a.https://doi.org/10.1029/2010JA015346David L. Kidder, Thomas R. Worsley Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions, Palaeogeography, Palaeoclimatology, Palaeoecology 295, no.1-21-2 (Sep 2010): 162–191.https://doi.org/10.1016/j.palaeo.2010.05.036Gyana Ranjan Tripathy, Sunil Kumar Singh Chemical erosion rates of river basins of the Ganga system in the Himalaya: Reanalysis based on inversion of dissolved major ions, Sr, and 87 Sr/ 86 Sr, Geochemistry, Geophysics, Geosystems 11, no.33 (Mar 2010): n/a–n/a.https://doi.org/10.1029/2009GC002862William W. Hay Evolving ideas about the Cretaceous climate and ocean circulation, Cretaceous Research 29, no.5-65-6 (Oct 2008): 725–753.https://doi.org/10.1016/j.cretres.2008.05.025Antony R. Orme The Rise and Fall of the Davisian Cycle of Erosion: Prelude, Fugue, Coda, and Sequel, Physical Geography 28, no.66 (May 2013): 474–506.https://doi.org/10.2747/0272-3646.28.6.474Robert G. Watts Global Warming and the Future of the Earth, Synthesis Lectures on Energy and the Environment: Technology, Science, and Society 1, no.11 (Jan 2007): 1–114.https://doi.org/10.2200/S00098ED1V01Y200709EGY001 Bibliography, (Jan 2007): 611–681.https://doi.org/10.1016/B978-012388751-1/50008-9Dana L. Royer CO2-forced climate thresholds during the Phanerozoic, Geochimica et Cosmochimica Acta 70, no.2323 (Dec 2006): 5665–5675.https://doi.org/10.1016/j.gca.2005.11.031Anita Roth-Nebelsick Reconstructing atmospheric carbon dioxide with stomata: possibilities and limitations of a botanical pCO2-sensor, Trees 19, no.33 (Dec 2004): 251–265.https://doi.org/10.1007/s00468-004-0375-2P MARKWICK, P VALDES Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example, Palaeogeography, Palaeoclimatology, Palaeoecology 213, no.1-21-2 (Oct 2004): 37–63.https://doi.org/10.1016/S0031-0182(04)00330-XEdouard Bard Greenhouse effect and ice ages: historical perspective, Comptes Rendus Geoscience 336, no.7-87-8 (Jun 2004): 603–638.https://doi.org/10.1016/j.crte.2004.02.005D.C. Mildenhall, C.J. Hollis, T.R. Naish Orbitally-influenced vegetation record of the Mid-Pleistocene Climate Transition, offshore eastern New Zealand (ODP Leg 181, Site 1123), Marine Geology 205, no.1-41-4 (Apr 2004): 87–111.https://doi.org/10.1016/S0025-3227(04)00019-2A. Roth-Nebelsick, T. Utescher, V. Mosbrugger, L. Diester-Haass, H. Walther Changes in atmospheric CO2 concentrations and climate from the Late Eocene to Early Miocene: palaeobotanical reconstruction based on fossil floras from Saxony, Germany, Palaeogeography, Palaeoclimatology, Palaeoecology 205, no.1-21-2 (Mar 2004): 43–67.https://doi.org/10.1016/j.palaeo.2003.11.014Bernard Dupré, Céline Dessert, Priscia Oliva, Yves Goddéris, Jérôme Viers, Louis François, Romain Millot, Jérôme Gaillardet Rivers, chemical weathering and Earth's climate, Comptes Rendus Geoscience 335, no.1616 (Dec 2003): 1141–1160.https://doi.org/10.1016/j.crte.2003.09.015D.A.D. Evans A fundamental Precambrian–Phanerozoic shift in earth's glacial style?, Tectonophysics 375, no.1-41-4 (Nov 2003): 353–385.https://doi.org/10.1016/S0040-1951(03)00345-7C.H. Lear, H. Elderfield, P.A. Wilson A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes, Earth and Planetary Science Letters 208, no.1-21-2 (Mar 2003): 69–84.https://doi.org/10.1016/S0012-821X(02)01156-1A.F. White Natural Weathering Rates of Silicate Minerals, (Jan 2003): 133–168.https://doi.org/10.1016/B0-08-043751-6/05076-3Giles H. Brown Glacier meltwater hydrochemistry, Applied Geochemistry 17, no.77 (Jul 2002): 855–883.https://doi.org/10.1016/S0883-2927(01)00123-8D. J. Beerling, D. L. Royer Reading a CO 2 signal from fossil stomata, New Phytologist 153, no.33 (Jun 2008): 387–397.https://doi.org/10.1046/j.0028-646X.2001.00335.x Bibliography, (Jan 2002): 321–341.https://doi.org/10.1016/S0074-6142(13)62972-1Simon H Brocklehurst, Kelin X Whipple Glacial erosion and relief production in the Eastern Sierra Nevada, California, Geomorphology 42, no.1-21-2 (Jan 2002): 1–24.https://doi.org/10.1016/S0169-555X(01)00069-1A.J. Boucot, Jane Gray A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere, Earth-Science Reviews 56, no.1-41-4 (Dec 2001): 1–159.https://doi.org/10.1016/S0012-8252(01)00066-6K. Wallmann Controls on the cretaceous and cenozoic evolution of seawater composition, atmospheric CO 2 and climate, Geochimica et Cosmochimica Acta 65, no.1818 (Sep 2001): 3005–3025.https://doi.org/10.1016/S0016-7037(01)00638-X David L. Kidder and Douglas H. Erwin Secular Distribution of Biogenic Silica through the Phanerozoic: Comparison of Silica‐Replaced Fossils and Bedded Cherts at the Series Level D. L. Kidder and D. H. Erwin, The Journal of Geology 109, no.44 (Jul 2015): 509–522.https://doi.org/10.1086/320794Wolfram M. Kürschner Leaf sensor for CO2 in deep time, Nature 411, no.68356835 (May 2001): 247–248.https://doi.org/10.1038/35077181Isaac M. Held, Brian J. Soden Water Vapor Feedback and Global Warming, Annual Review of Energy and the Environment 25, no.11 (Nov 2000): 441–475.https://doi.org/10.1146/annurev.energy.25.1.441James R Fleming T. C. Chamberlin, Climate Change, and Cosmogony, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31, no.33 (Sep 2000): 293–308.https://doi.org/10.1016/S1355-2198(00)00015-0Paul N. Pearson, Martin R. Palmer Atmospheric carbon dioxide concentrations over the past 60 million years, Nature 406, no.67976797 (Aug 2000): 695–699.https://doi.org/10.1038/35021000M. S. Bhatti Global Warming Impact of Automotive Air Conditioning Systems, (Nov 1998).https://doi.org/10.4271/982929Douglas N Reusch, Greg Ravizza, Kirk A Maasch, James D Wright Miocene seawater 187Os/188Os ratios inferred from metalliferous carbonates, Earth and Planetary Science Letters 160, no.1-21-2 (Jul 1998): 163–178.https://doi.org/10.1016/S0012-821X(98)00082-XF. B. Mudge The development of the ‘greenhouse’ theory of global climate change from Victorian times, Weather 52, no.11 (Apr 2012): 13–17.https://doi.org/10.1002/j.1477-8696.1997.tb06243.xWilliam F. Ruddiman, Warren L. Prell Introduction to the Uplift-Climate Connection, (Jan 1997): 3–15.https://doi.org/10.1007/978-1-4615-5935-1_1Sean E. McCauley, Donald J. DePaolo The Marine 87Sr/86Sr and δ18O Records, Himalayan Alkalinity Fluxes, and Cenozoic Climate Models, (Jan 1997): 427–467.https://doi.org/10.1007/978-1-4615-5935-1_19William F. Ruddiman, Maureen E. Raymo, Warren L. Prell, John E. Kutzbach The Uplift-Climate Connection: A Synthesis, (Jan 1997): 471–515.https://doi.org/10.1007/978-1-4615-5935-1_20L.J. Lourens, F.J. Hilgen Long-periodic variations in the earth's obliquity and their relation to third-order eustatic cycles and late Neogene glaciations, Quaternary International 40 (Jan 1997): 43–52.https://doi.org/10.1016/S1040-6182(96)00060-2W. W. Hay Tectonics and climate, Geologische Rundschau 85, no.33 (Sep 1996): 409–437.https://doi.org/10.1007/BF02369000Robert A. Berner, Kirk A. Maasch Chemical weathering and controls on atmospheric O2 and CO2: Fundamental principles were enunciated by J.J. Ebelmen in 1845, Geochimica et Cosmochimica Acta 60, no.99 (May 1996): 1633–1637.https://doi.org/10.1016/0016-7037(96)00104-4Y. Goddéris, L.M. François The Cenozoic evolution of the strontium and carbon cycles: relative importance of continental erosion and mantle exchanges, Chemical Geology 126, no.22 (Dec 1995): 169–190.https://doi.org/10.1016/0009-2541(95)00117-3Barry Saltzman, Mikhail Verbitsky Late Pleistocene climatic trajectory in the phase space of global ice, ocean state, and CO 2 : Observations and theory, Paleoceanography 9, no.66 (May 2010): 767–779.https://doi.org/10.1029/94PA02289Judith Totman Parrish A brief discussion of the history, strengths and limitations of conceptual climate models for pre-Quaternary time, (Jan 1994): 55–58.https://doi.org/10.1007/978-94-011-1254-3_7Alan J. Kaufman, Stein B. Jacobsen, Andrew H. Knoll The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate, Earth and Planetary Science Letters 120, no.3-43-4 (Dec 1993): 409–430.https://doi.org/10.1016/0012-821X(93)90254-7N. Eyles Earth's glacial record and its tectonic setting, Earth-Science Reviews 35, no.1-21-2 (Sep 1993): 1–248.https://doi.org/10.1016/0012-8252(93)90002-O A brief discussion of the history, strengths and limitations of conceptual climate models for pre-Quaternary time, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 341, no.12971297 (Jan 1997): 263–266.https://doi.org/10.1098/rstb.1993.0111Barry Saltzman, Kirk A. Maasch, Mikhail Ya. Verbitsky Possible effects of anthropogenically-increased CO 2 on the dynamics of climate: Implications for ice age cycles, Geophysical Research Letters 20, no.1111 (Dec 2012): 1051–1054.https://doi.org/10.1029/93GL01015Barry Saltzman, Mikhail Ya. Verbitsky The Late Cenozoic Glacial Regimes as a Combined Response to Earth-Orbital Variations and Forced and Free CO2 Variations, (Jan 1993): 343–361.https://doi.org/10.1007/978-3-642-85016-5_20Reid A. Bryson Simulating Past and Forecasting Future Climates, Environmental Conservation 20, no.44 (Aug 2009): 339–346.https://doi.org/10.1017/S0376892900023547M. E. Raymo, W. F. Ruddiman Tectonic forcing of late Cenozoic climate, Nature 359, no.63916391 (Sep 1992): 117–122.https://doi.org/10.1038/359117a0Mark David Handel, James S. Risbey Reflections on more than a century of climate change research, Climatic Change 21, no.22 (Jun 1992): 91–96.https://doi.org/10.1007/BF00140913Mark David Handel, James S. Risbey An annotated bibliography on the greenhouse effect and climate change, Climatic Change 21, no.22 (Jun 1992): 97–255.https://doi.org/10.1007/BF00140914William W. Hay The cause of the Late Cenozoic Northern Hemisphere glaciations: a climate change enigma, Terra Nova 4, no.33 (May 1992): 305–311.https://doi.org/10.1111/j.1365-3121.1992.tb00819.xA. Henderson-Sellers Modelling and monitoring ‘Greenhouse’ warming, Trends in Ecology & Evolution 5, no.99 (Sep 1990): 270–275.https://doi.org/10.1016/0169-5347(90)90079-SDean R. Lindstrom The Eurasian Ice Sheet Formation and collapse resulting from natural atmospheric CO 2 concentration variations, Paleoceanography 5, no.22 (May 2010): 207–227.https://doi.org/10.1029/PA005i002p00207H. N. Houerou Global Change: Population, Land-Use and Vegetation in the Mediterranean Basin by the Mid-21st Century, (Jan 1990): 301–367.https://doi.org/10.1007/978-94-009-0701-0_19 References, (Jan 1990): 609–679.https://doi.org/10.1016/S0070-4571(08)70341-8 References to Part I, (Jan 1990): 405–442.https://doi.org/10.1016/S0920-5446(08)70298-XHelmut Weissert C-Isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the early cretaceous, Surveys in Geophysics 10, no.11 (Feb 1989): 1–61.https://doi.org/10.1007/BF01901664Egon T. Degens Water, (Jan 1989): 238–283.https://doi.org/10.1007/978-3-642-48879-5_10Egon T. Degens Life, (Jan 1989): 284–341.https://doi.org/10.1007/978-3-642-48879-5_11Egon T. Degens Biogeochemical Evolution, (Jan 1989): 342–392.https://doi.org/10.1007/978-3-642-48879-5_12Reid Allen Bryson Will There be a Global ‘Greenhouse’ Warming?, Environmental Conservation 16, no.22 (Aug 2009): 97–99.https://doi.org/10.1017/S0376892900008833 References, (Jan 1988): 445–504.https://doi.org/10.1016/B978-0-12-733775-3.50011-0William W. Kellogg Mankind's impact on climate: The evolution of an awareness, Climatic Change 10, no.22 (Apr 1987): 113–136.https://doi.org/10.1007/BF00140251V. Ramanathan, L. Callis, R. Cess, J. Hansen, I. Isaksen, W. Kuhn, A. Lacis, F. Luther, J. Mahlman, R. Reck, M. Schlesinger Climate-chemical interactions and effects of changing atmospheric trace gases, Reviews of Geophysics 25, no.77 (Jan 1987): 1441.https://doi.org/10.1029/RG025i007p01441Syukuro Manabe, Kirk Bryan CO 2 -induced change in a coupled ocean-atmosphere model and its paleoclimatic implications, Journal of Geophysical Research 90, no.C6C6 (Jan 1985): 11689.https://doi.org/10.1029/JC090iC06p11689S. B. Idso What if increases in atmospheric CO2 have an inverse greenhouse effect? I. Energy balance considerations related to surface albedo, Journal of Climatology 4, no.44 (Nov 2006): 399–409.https://doi.org/10.1002/joc.3370040405E. T. Degens, S. Kempe, A. Spitzy Carbon Dioxide: A Biogeochemical Portrait, (Jan 1984): 127–215.https://doi.org/10.1007/978-3-540-38829-6_6B.A. Kimball, S.B. Idso Increasing atmospheric CO2: effects on crop yield, water use and climate, Agricultural Water Management 7, no.1-31-3 (Sep 1983): 55–72.https://doi.org/10.1016/0378-3774(83)90075-6Carl-Christian Wallén Monitoring the Atmospheric CO2 Concentration, (Jan 1983): 3–29.https://doi.org/10.1007/978-94-009-6998-8_1John J Walsh Death in the sea: Enigmatic phytoplankton losses, Progress in Oceanography 12, no.11 (Jan 1983): 1–86.https://doi.org/10.1016/0079-6611(83)90006-XB.A. KIMBALL, S.B. IDSO Increasing Atmospheric CO2: Effects on Crop Yield, Water use and Climate, (Jan 1983): 55–72.https://doi.org/10.1016/B978-0-444-42214-9.50011-9G.S. Golitsyn Almost Empirical Approaches to the Problem of Climate, its Variations and Fluctuations, (Jan 1983): 85–115.https://doi.org/10.1016/S0065-2687(08)60172-7 References, (Jan 1982): 288–304.https://doi.org/10.1016/S0074-6142(08)60261-2John J. Walsh, Gilbert T. Rowe, Richard L. Iverson, C. Peter McRoy Biological export of shelf carbon is a sink of the global CO2 cycle, Nature 291, no.58125812 (May 1981): 196–201.https://doi.org/10.1038/291196a0C.C. Wallén Global monitoring of carbon dioxide in the atmosphere, Environment International 2, no.4-64-6 (Jan 1979): 351–355.https://doi.org/10.1016/0160-4120(79)90009-6Gregg Marland, Ralph M. Rotty Carbon dioxide and climate, Reviews of Geophysics 17, no.77 (Jan 1979): 1813.https://doi.org/10.1029/RG017i007p01813Stephen G. Brush A Geologist among Astronomers: The Rise and Fall of the Chamberlin-Moulton Cosmogony, Part 1, Journal for the History of Astronomy 9, no.11 (Feb 1978): 1–41.https://doi.org/10.1177/002182867800900101J. H. Mercer West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster, Nature 271, no.56435643 (Jan 1978): 321–325.https://doi.org/10.1038/271321a0Gerald Dittberner Climatic Change: Volcanoes, Man-Made Pollution, and Carbon Dioxide, IEEE Transactions on Geoscience Electronics 16, no.11 (Jan 1978): 50–61.https://doi.org/10.1109/TGE.1978.294525M. I. Budyko Climatic Changes, 3 (Jan 1977).https://doi.org/10.1029/SP010Earl W. Barrett, H. E. Landsberg Inadvertent weather and climate modification, C R C Critical Reviews in Environmental Control 6, no.11 (Dec 1975): 15–90.https://doi.org/10.1080/10643387509381634Martin I. Hoffert Global distributions of atmospheric carbon dioxide in the fossil-fuel era: A projection, Atmospheric Environment (1967) 8, no.1212 (Dec 1974): 1225–1249.https://doi.org/10.1016/0004-6981(74)90003-1Bradley J. Palmer A Review Paper on the Effect of Carbon Dioxide and Aerosols on Climate Modification, Environmental Letters 5, no.44 (Sep 2009): 249–265.https://doi.org/10.1080/00139307309435533L. Metz, Richard Klein Toward a general theory of climate behavior based on the viewpoint of systems theory, (Dec 1972): 415–420.https://doi.org/10.1109/CDC.1972.269033M. I. Budyko The future climate, Eos, Transactions American Geophysical Union 53, no.1010 (Jan 1972): 868.https://doi.org/10.1029/EO053i010p00868 Transforming The Earth’S Life-Sustaining Atmosphere, (): 192–231.https://doi.org/10.1007/978-0-387-33365-6_9Kenneth R. Lang References, (): 411–522.https://doi.org/10.1007/978-3-540-76953-8_9 Systems problems in global change research, (): 191–197.https://doi.org/10.1007/BFb0033664 Chapter 12 Future Paleolimnological Applications, (Jan 1968): 185–204.https://doi.org/10.1016/S0070-4571(08)70836-7F. A. Rohrman, B. J. Steigerwald, J. H. Ludwig Industrial Emissions of Carbon Dioxide in the United States: A Projection, Science 156, no.37773777 (May 1967): 931–932.https://doi.org/10.1126/science.156.3777.931Rhodes W. Fairbridge CONVERGENCE OF EVIDENCE ON CLIMATIC CHANGE AND ICE AGES, Annals of the New York Academy of Sciences 95, no.11 (Dec 2006): 542–579.https://doi.org/10.1111/j.1749-6632.1961.tb50059.xL. K. COACHMAN, E. HEMMINGSEN, P. F. SCHOLANDER, T. ENNS, H. DE VRIES Gases in Glaciers, Science 127, no.33093309 (May 1958): 1288–1289.https://doi.org/10.1126/science.127.3309.1288ROGER REVELLE, HANS E. SUESS Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO 2 during the Past Decades, Tellus 9, no.11 (Feb 1957): 18–27.https://doi.org/10.1111/j.2153-3490.1957.tb01849.xFrank Leverett Problems of the Glacialist, Science 71, no.18291829 (Jan 1930): 47–57.https://doi.org/10.1126/science.71.1829.47A. K. Lobeck THE SUPERB POSITION OF NEW YORK CITY AS A CENTER FOR PHYSIOGRAPHIC STUDY, Annals of the New York Academy of Sciences 28, no.11 (Dec 1918): 1–50.https://doi.org/10.1111/j.1749-6632.1918.tb55349.xG. K. Gilbert Rhythms and Geologic Time, Science 11, no.287287 (Jun 1900): 1001–1012.https://doi.org/10.1126/science.11.287.1001

Referência(s)
Altmetric
PlumX