Osmoregulation in the mammalian kidney: The role of organic osmolytes

1999; Wiley; Volume: 283; Issue: 7 Linguagem: Inglês

10.1002/(sici)1097-010x(19990601)283

ISSN

1097-010X

Autores

R. Willi Grunewald, Rolf K. H. Kinne,

Tópico(s)

Aldose Reductase and Taurine

Resumo

Journal of Experimental ZoologyVolume 283, Issue 7 p. 708-724 Comparative Physiology and Biochemistry Osmoregulation in the mammalian kidney: The role of organic osmolytes R. Willi Grunewald, R. Willi Grunewald Georg-August-Universität, Zentrum Innere Medizin, 37070 Göttingen, GermanySearch for more papers by this authorRolf K.H. Kinne, Corresponding Author Rolf K.H. Kinne [email protected] Max-Planck-Institut für molekulare Physiologie, Abteilung Epithelphysiologie, 44139 Dortmund, GermanyKinne, Max-Planck-Institut für molekulare Physiologie, Abteilung Epithelphysiologie, Postfach 10 26 64, 44026 Dortmund, Germany===Search for more papers by this author R. Willi Grunewald, R. Willi Grunewald Georg-August-Universität, Zentrum Innere Medizin, 37070 Göttingen, GermanySearch for more papers by this authorRolf K.H. Kinne, Corresponding Author Rolf K.H. Kinne [email protected] Max-Planck-Institut für molekulare Physiologie, Abteilung Epithelphysiologie, 44139 Dortmund, GermanyKinne, Max-Planck-Institut für molekulare Physiologie, Abteilung Epithelphysiologie, Postfach 10 26 64, 44026 Dortmund, Germany===Search for more papers by this author First published: 15 April 1999 https://doi.org/10.1002/(SICI)1097-010X(19990601)283:7 3.0.CO;2-VCitations: 19AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Amiry-Moghaddam M, Nagelhus E, Ottersen OP. 1994. Light- and electron microscopic distribution of taurine, an organic osmolyte, in rat renal tubule cells. Kidney Int 45: 10–22. Medline 10.1038/ki.1994.2 CASPubMedWeb of Science®Google Scholar Bagnasco S, Balaban R, Fales HM, Yang YM, Burg M. 1986. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261: 5872–5877. Medline CASPubMedWeb of Science®Google Scholar Bagnasco SM, Murphy HR, Bedford JJ, Burg MB. 1988. Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux. Am J Physiol 254: C788–C792. Medline 10.1152/ajpcell.1988.254.6.C788 CASPubMedWeb of Science®Google Scholar Bagnasco SM, Montrose MH, Handler JS. 1993. Role of calcium in organic osmolyte efflux when MDCK cells are shifted from hypertonic to isotonic medium. Am J Physiol 264: C1165–C1170. Medline 10.1152/ajpcell.1993.264.5.C1165 CASPubMedWeb of Science®Google Scholar Banderali U, Roy G. 1992. Anion channels for amino acids in MDCK cells. Am J Physiol 263: C1200–C1207. Medline 10.1152/ajpcell.1992.263.6.C1200 CASPubMedWeb of Science®Google Scholar Bauernschmitt HG, Kinne RKH. 1993. Metabolism of the "organic osmolyte" glycerophosphorylcholine in isolated rat inner medullary collecting duct cells: II. Regulation by extracellular osmolality. Biochim Biophys Acta 1150: 25–34. Medline 10.1016/0005-2736(93)90117-I CASPubMedWeb of Science®Google Scholar Bedford JJ, Smiley M, Leader JP. 1995. Organic osmolytes in the kidney of domesticated red deer, Cervus elaphus. Comp Biochem Physiol A Physiol 110: 329–333. Medline 10.1016/0300-9629(94)00180-2 CASPubMedWeb of Science®Google Scholar Bevan C, Theiß C, Kinne RKH. 1990. Role of Ca2+ in sorbitol release from rat inner medullary collecting duct (IMCD) cells under hypoosmotic stress. Biochem Biophys Res Commun 170: 563–568. Medline 10.1016/0006-291X(90)92128-M CASPubMedWeb of Science®Google Scholar Bichet DG. 1996. Vasopressin receptors in health and disease. Kidney Int 49: 1706–1711. Medline 10.1038/ki.1996.252 CASPubMedWeb of Science®Google Scholar Blumenfeld JD, Hebert SC, Heilig CW, Balschi JA, Stromski ME, Gullans SR. 1989. Organic osmolytes in inner medulla of Brattleboro rat: effects of ADH and dehydration. Am J Physiol 256: F916–F922. Medline CASPubMedWeb of Science®Google Scholar Boese SH, Wehner F, Kinne RKH. 1996. Taurine permeation through swelling-activated anion conductance in rat IMCD cells in primary culture. Am J Physiol 271: F498–F507. 10.1152/ajprenal.1996.271.3.F498 CASPubMedWeb of Science®Google Scholar Bonvalet J-P. 1998. Regulation of sodium transport by steroid hormones. Kidney Int 53: S49–S56. Google Scholar Boulanger Y, Legault P, Tejedor A, Vinay P, Theriault Y. 1988. Biochemical characterization and osmolytes in papillary collecting ducts from pig and dog kidneys. Can J Physiol Pharmacol 66: 1282–1290. Medline 10.1139/y88-210 CASPubMedWeb of Science®Google Scholar Breton S, Marsolais M, Laprade R. 1995. Hypotonicity increases basolateral taurine permeability in rabbit proximal convoluted tubule. Am J Physiol 268: F595–F603. Medline CASPubMedWeb of Science®Google Scholar Burg MB. 1995. Molecular basis of osmotic regulation. Am J Physiol 268: F983–F996. CASPubMedWeb of Science®Google Scholar Burg MB. 1996. Coordinate regulation of organic osmolytes in renal cells. Kidney Int 49: 1684–1685. Medline 10.1038/ki.1996.247 CASPubMedWeb of Science®Google Scholar Burg MB, Kwon ED, Peters EM. 1996. Glycerophosphorylcholine and betaine counteract the effect of urea on pyruvate kinase. Kidney Int 50: S100–S104. Web of Science®Google Scholar Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger J-D, Rossier BC. 1994. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463–467. Medline 10.1038/367463a0 CASPubMedWeb of Science®Google Scholar Chen JG, Coe M, McAteer JA, Kempson SA. 1996. Hypertonic activation and recovery of system A amino acid transport in renal MDCK cells. Am J Physiol 270: F419–F424. CASPubMedWeb of Science®Google Scholar Chesney RW, Gusowski N, Dabbagh S, Padilla M. 1985. Renal cortex taurine concentration regulates renal adaptive response to altered dietary intake of sulfur amino acids. Prog Clin Biol Res 179: 33–42. Medline CASPubMedGoogle Scholar Cohen MA, Hruska KA, Daughaday WH. 1982. Free myo-inositol in canine kidneys: selective concentration in the renal medulla. Proc Soc Exp Biol Med 169: 380–385. Medline 10.3181/00379727-169-41361 CASPubMedWeb of Science®Google Scholar Cowley BS Jr, Ferraris JD, Carper D, Burg MB. 1990. In vivo osmoregulation of aldose reductase mRNA, protein, and sorbitol in renal medulla. Am J Physiol 258: F154–F161. CASPubMedWeb of Science®Google Scholar Czekay R-P, Kinne-Saffran E, Kinne RKH. 1994. Membrane traffic and sorbitol release during osmo- and volume regulation in isolated rat renal inner medullary collecting duct cells. Eur J Cell Biol 63: 20–31. Medline CASPubMedWeb of Science®Google Scholar Dantzler WH, Silbernagl S. 1976. Renal tubular reabsorption of taurine, gamma-aminobutyric acid (GABA) and beta-alanine studied by continuous microperfusion. Pflügers Arch 367: 123–128. Medline 10.1007/BF00585147 CASPubMedWeb of Science®Google Scholar Dantzler WH, Silbernagl S. 1988. Amino acid transport by juxtamedullary nephrons: distal reabsorption and recycling. Am J Physiol 255: F397–F407. CASPubMedWeb of Science®Google Scholar Dantzler WH, Silbernagl S. 1990. Amino acid transport: microinfusion and micropuncture of Henle's loops and vasa recta. Am J Physiol 258: F504–F513. CASPubMedWeb of Science®Google Scholar Dantzler WH, Silbernagl S. 1991. Specificity of amino acid transport in renal papilla: microinfusion of Henle's loops and vasa recta. Am J Physiol 261: F495–F504. CASPubMedWeb of Science®Google Scholar Eckstein AL. 1994. Untersuchungen zur Regulation von organischen Osmolyten in epithelialen Zellen der dicken aufsteigenden Henle'schen Schleifen der Kaninchenniere. MD thesis, Universität Ulm Google Scholar Eckstein A, Grunewald RW. 1996. Osmotic regulation of sorbitol in the thick ascending limb of Henle's loop. Am J Physiol 270: F275–F282. Medline CASPubMedWeb of Science®Google Scholar Edmands S, Yancey PH. 1992. Effects on rat renal osmolytes of extended treatment with an aldose reductase inhibitor. Comp Biochem Physiol C103: 499–502. Google Scholar Eng J, Berkowitz BA, Balaban RS. 1990. Renal distribution and metabolism of [2H9]choline: a 2H NMR and MRI study. NMR Biomed 3: 173–177. Medline 10.1002/nbm.1940030405 CASPubMedGoogle Scholar Ferraris JD, Burg MB, Williams CK, Peters EM, Garcia-Perez A. 1996a. Betaine transporter cDNA cloning and effect of osmolytes on its mRNA induction. Am J Physiol 270: C650–C654. CASPubMedWeb of Science®Google Scholar Ferraris JD, Williams CK, Jung KY, Bedford JJ, Burg MB, Garcia-Perez A. 1996b. ORE, a eukaryotic minimal essential osmotic response element: the aldose reductase gene in hyperosmotic stress. J Biol Chem 271: 18318–18321. Medline 10.1074/jbc.271.31.18318 CASPubMedWeb of Science®Google Scholar Furlong TJ, Moriyama T, Spring KR. 1991. Activation of osmolyte efflux from cultured renal papillary epithelial cells. J Membrane Biol 123: 269–277. Medline 10.1007/BF01870410 CASPubMedWeb of Science®Google Scholar Galcheva-Gargova Z, Derijard B, Wu JH, Davis RJ. 1994. An osmosensing signal transduction pathway in mammalian cells. Science 265: 806–808. Medline 10.1126/science.8047888 CASPubMedWeb of Science®Google Scholar Garcia-Pérez A, Burg MB. 1991. Renal medullary organic osmolytes. Physiol Rev 71: 1081–1115. Medline 10.1152/physrev.1991.71.4.1081 CASPubMedWeb of Science®Google Scholar Garcia-Perez A, Martin B, Murphy HR, Uchida S, Murer H, Cowley BD Jr, Handler JS, Burg MB. 1989. Molecular cloning of cDNA coding for kidney aldose reductase: regulation of specific mRNA accumulation by NaCl-mediated osmotic stress. J Biol Chem 264: 16815–16821. Medline CASPubMedWeb of Science®Google Scholar Garty H, Furlong TJ, Ellis DE, Spring KR. 1991. Sorbitol permease: an apical membrane transporter in cultured renal papillary epithelial cells. Am J Physiol 260: F650–F656. Medline CASPubMedWeb of Science®Google Scholar Gekle M, Golenhofen N, Oberleithner H, Silbernagl S. 1996. Rapid activation of Na+/H+ exchange by aldosterone in renal epithelial cells requires Ca2+ and stimulation of a plasma membrane proton conductance. Proc Natl Acad Sci USA 93: 10500–10504. 10.1073/pnas.93.19.10500 CASPubMedWeb of Science®Google Scholar Grossman EB, Hebert SC. 1989. Renal inner medullary choline dehydrogenase activity: characterization and modulation. Am J Physiol 256: F107–F112. Medline CASPubMedWeb of Science®Google Scholar Gruender S, Rossier BC. 1997. A reappraisal of aldosterone effects on the kidney: new insights provided by epithelial sodium channel cloning. Curr Opin Nephrol Hypertens 6: 35–39. Medline 10.1097/00041552-199701000-00007 CASPubMedWeb of Science®Google Scholar Grunewald JM, Grunewald RW, Kinne RKH. 1993. Ion content and cell volume in isolated collecting duct cells: effect of hypotonicity. Kidney Int 44: 509–517. Medline 10.1038/ki.1993.275 CASPubMedWeb of Science®Google Scholar Grunewald JM, Grunewald RW, Kinne RKH. 1994. Regulation of ion content and cell volume in isolated rat renal IMCD cells under hypertonic conditions. Am J Physiol 267: F13–F19. Medline CASPubMedWeb of Science®Google Scholar Grunewald RW, Eckstein A. 1995. Osmotic regulation of the betaine metabolism in immortalized renal cells. Kidney Int 48: 1714–1720. Medline 10.1038/ki.1995.469 CASPubMedWeb of Science®Google Scholar Grunewald RW, Kinne RKH. 1988. Sugar transport in isolated rat kidney papillary collecting duct cells. Pflügers Arch 413: 32–37. Medline 10.1007/BF00581225 CASPubMedWeb of Science®Google Scholar Grunewald RW, Kinne RKH. 1989. Intracellular sorbitol content in isolated rat inner medullary collecting duct cells. Regulation by extracellular osmolarity. Pflügers Arch 414: 178–184. Medline 10.1007/BF00580961 CASPubMedWeb of Science®Google Scholar Grunewald RW, Weber II, Kinne RKH. 1995. Renal inner medullary sorbitol metabolism. Am J Physiol 269: F696–F701. Medline CASPubMedWeb of Science®Google Scholar Grunewald RW, Ehrhardt M, Brunst-Knoblich E, Stumper J, Müller GA. 1997a. Sorbitol transport in human renal interstitial cells. Pflügers Arch 433: R37. Google Scholar Grunewald RW, Schots J, Brunst-Knoblich E, Müller GA. 1997b. Osmoregulation of betaine transport in proximal tubule cells: Pt-1. Nieren- Hochdruckkrankh 26: 388. Google Scholar Grunewald RW, Schots J, Jehle P, Stracke S, Scott DM, Kinne RKH, Müller GA. 1997c. Characterization of immortalized rabbit renal proximal tubular cells: Pt-1. Nieren- Hochdruckkrankh 26: 405. Google Scholar Grunewald RW, Wagner M, Schubert I, Franz HE, Müller GA, Steffgen J. 1998. Rat renal expression of mRNA coding for aldose reductase and sorbitol dehydrogenase and its osmotic regulation in inner medullary collecting duct cells. Cell Physiol Biochem (in press). 10.1159/000016291 Web of Science®Google Scholar Grupp C, Pavenstädt-Grupp I, Grunewald RW, Bevan C, Stokes JBIII, Kinne RKH. 1989. A Na-K-Cl cotransporter in isolated rat papillary collecting duct cells. Kidney Int 36: 201–209. Medline 10.1038/ki.1989.180 CASPubMedWeb of Science®Google Scholar Guder WG, Beck FX, Schmolke M. 1990. Regulation and localization of organic osmolytes in mammalian kidney. Klin Wochenschr 68: 1091–1095. Medline 10.1007/BF01798058 CASPubMedWeb of Science®Google Scholar Gullans SR, Blumenfeld JD, Balschi JA, Kaleta M, Brenner RM, Heilig CW, Hebert SC. 1988. Accumulation of major organic osmolytes in rat renal inner medulla in dehydration. Am J Physiol 255: F626–F634. CASPubMedWeb of Science®Google Scholar Gullans SR, Heilig CW, Stromski ME, Blumenfeld JD. 1989. Methylamines and polyols in kidney, urinary bladder, urine, liver, brain, and plasma: an analysis using 1H nuclear magnetic resonance spectroscopy. Renal Physiol Biochem 12: 191–201. Medline CASPubMedWeb of Science®Google Scholar Hammerman MR, Sacktor B, Daughaday WH. 1980. Myo-inositol transport in renal brush border vesicles and its inhibition by D-glucose. Am J Physiol 239: F113–F120. Medline CASPubMedWeb of Science®Google Scholar Han JJ, Lee D, Bibbs L, Ulevitch RJ. 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808–811. Medline 10.1126/science.7914033 CASPubMedWeb of Science®Google Scholar Han XB, Budreau AM, Chesney RW. 1997. Functional expression of rat renal cortex taurine transporter in Xenopus laevis oocytes: adaptive regulation by dietary manipulation. Pediatr Res 41: 624–631. Medline 10.1203/00006450-199705000-00004 CASPubMedWeb of Science®Google Scholar Handler JS, Kwon HM. 1996. Regulation of the myo-inositol and betaine cotransporter by tonicity. Kidney Int 49: 1682–1683. Medline 10.1038/ki.1996.246 CASPubMedWeb of Science®Google Scholar Heilig CW, Brenner RM, Yu AS, Kone BC, Gullans SR. 1990. Modulation of osmolytes in MDCK cells by solutes, inhibitors, and vasopressin. Am J Physiol 259: F653–F659. Medline CASPubMedWeb of Science®Google Scholar Jans AWH, Grunewald RW, Kinne RKH. 1988. Pathways for organic osmolyte synthesis in rabbit renal papillary tissue, a metabolic study using 13C-labeled substrates. Biochim Biophys Acta 971: 157–162. Medline 10.1016/0167-4889(88)90187-5 CASPubMedWeb of Science®Google Scholar Jans AWH, Grunewald R-W, Kinne RKH. 1989. Pathways for the synthesis of sorbitol from 13C-labeled hexoses, pentose, and glycerol in renal papillary tissue. Magn Reson Med 9: 419–422. Medline 10.1002/mrm.1910090315 CASPubMedWeb of Science®Google Scholar Jessen H, Sheikh MI. 1991. Renal transport of taurine in luminal membrane vesicles from rabbit proximal tubule. Biochim Biophys Acta 1064: 189–198. Medline 10.1016/0005-2736(91)90301-N CASPubMedWeb of Science®Google Scholar Jones DP, Chesney RW. 1993. Polarized nature of taurine transport in LLC-PK1 and MDCK cells: further characterization of divergent transport models. Amino Acids 5: 329–339. 10.1007/BF00806951 CASPubMedWeb of Science®Google Scholar Jones DP, Miller LA, Chesney RW. 1993. Polarity of taurine transport in cultured renal epithelial cell lines: LLC-PK1 and MDCK. Am J Physiol 265: F137–F145. CASPubMedWeb of Science®Google Scholar Jones DP, Miller LA, Chesney RW. 1995. The relative roles of external taurine concentration and medium osmolality in the regulation of taurine transport in LLC-PK1 and MDCK cells. Pediatr Res 37: 227–232. Medline 10.1203/00006450-199502000-00017 CASPubMedWeb of Science®Google Scholar Kaneko T, Takenaka M, Okabe M, Yoshimura Y, Yamauchi A, Horio M, Kwon HM, Handler JS, Imai E. 1997. Osmolarity in renal medulla of transgenic mice regulates transcription via 5′-flanking region of canine BGT1 gene. Am J Physiol 272: F610–F616. CASPubMedWeb of Science®Google Scholar Kinne RKH, Ruhfus B, Tinel H, Boese S, Wehner F, Kinne-Saffran E. 1995. Renal organic osmolytes: signal transduction pathways and release mechanisms. In: NG De Santo, G Capasso, editors. Acid-base and electrolyte balance: molecular, cellular and clinical aspects. Cosenza, Italy: Istituto Italiano per gli Studi Filosofici. p 237–242. Google Scholar Kinne RKH, Boese SH, Kinne-Saffran E, Ruhfus B, Tinel H, Wehner F. 1996. Osmoregulation in the renal papilla: membranes, messengers and molecules. Kidney Int 49: 1686–1689. Medline 10.1038/ki.1996.248 CASPubMedWeb of Science®Google Scholar Kinne RKH, Grunewald RW, Ruhfus B, Kinne-Saffran E. 1997. Biochemistry and physiology of carbohydrates in the renal collecting duct. J Exp Zool 279: 436–442. Medline 10.1002/(SICI)1097-010X(19971201)279:5 3.0.CO;2-P CASPubMedWeb of Science®Google Scholar Kinne RKH. 1998. Mechanisms of osmolyte release. Contrib Nephrol 123: 34–49. Medline 10.1159/000059927 CASPubMedWeb of Science®Google Scholar Kinne-Saffran E, Kinne RKH. 1997. Sorbitol uptake in plasma membrane vesicles isolated from immortalized rabbit TALH cells: activation by a Ca2+/calmodulin-dependent protein kinase. J Membrane Biol 159: 231–238. Medline 10.1007/s002329900286 CASPubMedWeb of Science®Google Scholar Kirk K. 1997. Swelling-activated organic osmolyte channels. J Membrane Biol 158: 1–16. Medline 10.1007/s002329900239 CASPubMedWeb of Science®Google Scholar Kitamura H, Yamauchi A, Sugiura T, Matsuoka Y, Horio M, Tohyama M, Shimada S, Imai E, Hori M. 1998. Inhibition of myo-inositol transport causes acute renal failure with selective medullary injury in the rat. Kidney Int 53: 146–153. Medline 10.1046/j.1523-1755.1998.00747.x CASPubMedWeb of Science®Google Scholar Knepper MA, Wade JB, Terris J, Ecelbarger CA, Marples D, Mandon B, Chou C-L, Kishore BK, Nielsen S. 1996. Renal aquaporins. Kidney Int 49: 1712–1717. Medline 10.1038/ki.1996.253 CASPubMedWeb of Science®Google Scholar Kueltz D, Garcia-Perez A, Ferraris JD, Burg MB. 1997. Distinct regulation of osmoprotective genes in yeast and mammals: aldose reductase osmotic response element is induced independent of p38 and stress-activated protein kinase/Jun N-terminal kinase in rabbit kidney cells. J Biol Chem 272: 13165–13170. Medline Google Scholar Kwon ED, Jung KY, Edsall LC, Kim HY, Garcia-Perez A, Burg MB. 1995a. Osmotic regulation of synthesis of glycerophosphorylcholine from phosphatidylcholine in MDCK cells. Am J Physiol 268: C402–C412. 10.1152/ajpcell.1995.268.2.C402 CASPubMedWeb of Science®Google Scholar Kwon ED, Zablocki K, Jung KY, Peters EM, Garcia-Perez A, Burg MB. 1995b. Osmoregulation of GPC-choline phosphodiesterase in MDCK cells: different effects of urea and NaCl. Am J Physiol 269: C35–C41. Medline 10.1152/ajpcell.1995.269.1.C35 CASPubMedWeb of Science®Google Scholar Kwon ED, Zablocki K, Peters EM, Jung KY, Garcia-Perez A, Burg MB. 1996. Betaine and inositol reduce MDCK cell glycerophosphorylcholine by stimulating its degradation. Am J Physiol 270: C200–C207. CASPubMedWeb of Science®Google Scholar Kwon HM, Handler JS. 1995. Cell volume regulated transporters of compatible osmolytes. Curr Opin Cell Biol 7: 465–471. Medline 10.1016/0955-0674(95)80002-6 CASPubMedWeb of Science®Google Scholar Kwon HM, Yamauchi A, Uchida S, Robey RB, Garcia-Perez A, Burg MB, Handler JS. 1991. Renal Na-myo-inositol cotransporter mRNA expression in Xenopus oocytes: regulation by hypertonicity. Am J Physiol 260: F258–F263. Medline CASPubMedWeb of Science®Google Scholar Kwon HM, Yamauchi A, Uchida S, Preston A, Garcia-Perez A, Burg MB, Handler JS. 1992. Cloning of the cDNA for a Na+/myo-inositol cotransporter, ahypertonicity stress protein. J Biol Chem 267: 6297–6301. Medline CASPubMedWeb of Science®Google Scholar Kwon HM, Itoh T, Rim JS, Handler JS. 1995. The MAP kinase cascade is not essential for transcriptional stimulation of osmolyte transporter genes. Biochem Biophys Res Commun 213: 975–979. Medline 10.1006/bbrc.1995.2224 CASPubMedWeb of Science®Google Scholar Lohr JW, Pochal MA, Acara M. 1991. Osmoregulatory betaine uptake by rat renal medullary slices. J Am Soc Nephrol 2: 879–884. Medline CASPubMedWeb of Science®Google Scholar Martial S, Price SR, Sands JM. 1995. Regulation of aldose reductase, sorbitol dehydrogenase, and taurine cotransporter mRNA in rat medulla. J Am Soc Nephrol 5: 1971–1978. Medline CASPubMedWeb of Science®Google Scholar Matsell DG, Bennett T, Han X, Budreau AM, Chesney RW. 1997. Regulation of the taurine transporter gene in the S3 segment of the proximal tubule. Kidney Int 52: 748–754. Medline 10.1038/ki.1997.391 CASPubMedWeb of Science®Google Scholar Miller B, Schmid H, Chen TJ, Schmolke M, Guder WG. 1996. Determination of choline dehydrogenase activity along the rat nephron. Biol Chem Hoppe Seyler 377: 129–137. Medline 10.1515/bchm3.1996.377.2.129 CASPubMedWeb of Science®Google Scholar Moeckel GW, Lien YH. 1994. Bicarbonate dependency of betaine synthesis in cultured LLC-PK1 cells. Am J Physiol 266: F512–F515. Medline CASPubMedWeb of Science®Google Scholar Moeckel GW, Lien Y-HH. 1997. Distribution of de novo synthesized betaine in rat kidney: role of renal synthesis on medullary betaine accumulation. Am J Physiol 272: F94–F99. CASPubMedWeb of Science®Google Scholar Moeckel GW, Lai L-W, Guder WG, Kwon HM, Lien Y-H. 1997. Kinetics and osmoregulation of Na+- and Cl–-dependent betaine transporter in rat renal medulla. Am J Physiol 272: F100–F106. CASPubMedWeb of Science®Google Scholar Moriyama T, Garcia-Perez A, Burg MB. 1989. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J Biol Chem 264: 16810–16814. Medline CASPubMedWeb of Science®Google Scholar Moriyama T, Garcia-Perez A, Burg MB. 1990a. Factors affecting the ratio of the different organic osmolytes in renal medullary cells. Am J Physiol 259: F847–F858. Medline CASPubMedWeb of Science®Google Scholar Moriyama TH, Murphy R, Martin BM, Garcia-Perez A. 1990b. Detection of specific mRNAs in single nephron segments by use of the polymerase chain reaction. Am J Physiol 258: F1470–F1474. Medline CASPubMedWeb of Science®Google Scholar Nakanishi T, Burg MB. 1989a. Osmoregulatory fluxes of myo-inositol and betaine in renal cells. Am J Physiol 257: C964–C970. CASPubMedWeb of Science®Google Scholar Nakanishi T, Burg MB. 1989b. Osmoregulation of glycerophosphorylcholine content of mammalian renal cells. Am J Physiol 257: C795–C801. 10.1152/ajpcell.1989.257.4.C795 CASPubMedWeb of Science®Google Scholar Nakanishi T, Balaban RS, Burg MB. 1988. Survey of osmolytes in renal cell lines. Am J Physiol 255: C181–C191. 10.1152/ajpcell.1988.255.2.C181 CASPubMedWeb of Science®Google Scholar Nakanishi TR, Turner J, Burg MB. 1989. Osmoregulatory changes in myo-inositol transport by renal cells. Proc Natl Acad Sci USA 86: 6002–6006. 10.1073/pnas.86.15.6002 CASPubMedWeb of Science®Google Scholar Nakanishi T, Uyama O, Sugita M. 1991. Osmotically regulated taurine content in rat renal inner medulla. Am J Physiol 261: F957–F962. CASPubMedWeb of Science®Google Scholar Nakanishi T, Yamauchi Y, Nakahama H, Yamamura Y, Yamade Y, Orita Y, Fujiwara Y, Uyeda N, Takamitsu Y, Sugita M. 1994. Organic osmolytes in rat renal inner medulla are modulated by vasopressin V1 and/or V2 antagonists. Am J Physiol 267: F147–F152. Google Scholar Nakanishi T, Yamauchi A, Sugita M, Takamitsu Y. 1996. Aldose reductase and myo-inositol transporter mRNA are independently regulated in rat renal medulla. J Am Soc Nephrol 7: 283–289. Medline CASPubMedWeb of Science®Google Scholar Napathorn S, Spring KR. 1994. Further characterization of the sorbitol permease in PAP-HT25 cells. Am J Physiol 267: C514–C519. Medline 10.1152/ajpcell.1994.267.2.C514 CASPubMedWeb of Science®Google Scholar Neuhofer W, Muller E, Burger-Kentischer A, Fraek ML, Thurau K, Beck F. 1998. Pretreatment with hypertonic NaCl protects MDCK cells against high urea concentrations. Pflügers Arch 435: 407–414. Medline 10.1007/s004240050531 CASPubMedWeb of Science®Google Scholar Oberleithner H, Steigner W, Silbernagl S, Vogel U, Gstraunthaler G, Pfaller W. 1990. Madin-Darby canine kidney cells: III. Aldosterone stimulates an apical H+/K+ pump. Pflügers Arch 416: 540–547. Medline 10.1007/BF00382687 CASPubMedWeb of Science®Google Scholar Park T, Rogers QR, Morris JG, Chesney RW. 1989. Effect of dietary taurine on renal taurine transport by proximal tubule brush border membrane vesicles in the kitten. J Nutr 119: 1452–1460. Medline CASPubMedWeb of Science®Google Scholar Preston AS, Yamauchi A, Kwon HM, Handler JS. 1995. Activators of protein kinase A and of protein kinase C inhibit MDCK cell myo-inositol and betaine uptake. J Am Soc Nephrol 6: 1559–1564. Medline CASPubMedWeb of Science®Google Scholar Pummer S, Lien YH, Moeckel GW, Völker K, Silbernagl S. 1995. Characteristics and localization of betaine reabsorption in rat kidney. In: Abstractbook. Madrid: VIIIth International Congress of Nephrology. p 58. Google Scholar Puoti A, May A, Canessa CM, Horisberger JD, Schild L, Rossier BC. 1995. The highly selective low-conductance epithelial Na channel of Xenopus laevis A6 kidney cells. Am J Physiol 269: C188–C197. Medline 10.1152/ajpcell.1995.269.1.C188 CASPubMedWeb of Science®Google Scholar Robey RB, Kwon HM, Handler JS, Garcia-Perez A, Burg MB. 1991. Induction of glycinebetaine uptake into Xenopus oocytes by injection of poly(A)+ RNA from renal cells exposed to high extracellular NaCl. J Biol Chem 266: 10400–10405. Medline CASPubMedWeb of Science®Google Scholar Roy G, Banderali U. 1994. Channels for ions and amino acids in kidney cultured cells (MDCK) during volume regulation. J Exp Zool 268: 121–126. Medline 10.1002/jez.1402680208 CASPubMedWeb of Science®Google Scholar Roy G, Malo C. 1992. Activation of amino acid diffusion by a volume increase in cultured kidney (MDCK) cells. J Membrane Biol 130: 83–90. Medline 10.1007/BF00233740 CASPubMedWeb of Science®Google Scholar Roy G, Sauvé R. 1987. Effect of anisotonic media on volume, ion and amino-acid content and membrane potential of kidney cells (MDCK) in culture. J Membrane Biol 100: 83–96. Medline 10.1007/BF02209143 CASPubMedWeb of Science®Google Scholar Ruhfus B. 1996. Charakterisierung von Transportsystemen für die organischen Osmolyte in papillären Sammelrohrzellen der Rattenniere. PhD thesis, Ruhr-Universität, Bochum. Google Scholar Ruhfus B, Kinne RKH. 1996. Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway. Kidney Blood Press Res 19: 317–324. Medline 10.1159/000174094 CASPubMedWeb of Science®Google Scholar Ruhfus B, Tinel H, Kinne RKH. 1996. Role of G-proteins in the regulation of organic osmolyte efflux from isolated rat renal inner medullary collecting duct cells. Pflügers Arch 433: 35–41. Medline 10.1007/s004240050245 CASPubMedWeb of Science®Google Scholar Ruhfus B, Bauernschmitt HG, Kinne RKH. 1998. Properties of a polarized primary culture from rat renal inner medullary collecting duct (IMCD) cells. In Vitro Cell Dev Biol Animal 34: 227–231. Medline 10.1007/s11626-998-0128-4 CASPubMedWeb of Science®Google Scholar Russo LM, Marano CW, Hagee MM, Laughlin KV, Guy A, Varimbi S, Mullin JM. 1995. Sodium-independent carrier-mediated inositol transport in cultured renal epithelial (LLC-PK1) cells. Biochim Biophys Acta 1236: 15–22. Medline 10.1016/0005-2736(95)00045-5 PubMedWeb of Science®Google Scholar Sanchez-Olea R, Pasantes-Morales H, Lazaro H, Cereijido M. 1991. Osmolarity-sensitive release of free amino acids from cultured kidney cells (MDCK). J Membrane Biol 121: 1–9. Medline 10.1007/BF01870646 CASPubMedWeb of Science®Google Scholar Sands JM, Schrader DC. 1990. Coordinated response of renal medullary enzymes regulating net sorbitol production in diuresis and antidiuresis. J Am Soc Nephrol 1: 58–65. Medline CASPubMedWeb of Science®Google Scholar Sands JM, Terada Y, Bernard LM, Knepper MA. 1989. Aldose reductase activities in microdissected rat renal tubule segments. Am J Physiol 256: F563–F569. CASPubMedWeb of Science®Google Scholar Schmolke M, Guder WG. 1989. Metabolic regulation of organic osmolytes in tubules from rat renal inner and outer medulla. Renal Physiol Biochem 12: 347–358. Medline CASPubMedWeb of Science®Google Scholar Schmolke M, Beck FX, Guder WG. 1989. Effect of antidiuretic hormone on renal organic osmolytes in Brattleboro rats. Am J Physiol 257: F732–F737. Medline CASPubMedWeb of Science®Google Scholar Schmolke M, Schilling A, Keiditsch E, Guder WG. 1996. Intrarenal distribution of organic osmolytes in human kidney. Eur J Clin Chem Clin Biochem 34: 499–501. Medline CASPubMedWeb of Science®Google Scholar Schubert AL. 1996. Osmotische Regulation der Aldosereduktase und Sorbitsynthese in Sammelrohrzellen der Nierenpapille (IMCD-Zellen). MD thesis, Universität Ulm. Google Scholar Schwartz IL, Shlatz LJ, Kinne-Saffran E, Kinne R. 1974. Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone. Proc Natl Acad Sci USA 71: 2595–2599. 10.1073/pnas.71.7.2595 CASPubMedWeb of Science®Google Scholar Shayman JA, Wu D. 1990. Myo-inositol does not modulate PI turnover in MDCK cells under hyperosmolar conditions. Am J Physiol 258: F1282–F1287. Medline CASPubMedWeb of Science®Google Scholar Sheikh-Hamad D, Garcia-Perez A, Ferraris JD, Peters EM, Burg MB. 1994. Induction of gene expression by heat shock versus osmotic stress. Am J Physiol 267: F28–F34. Medline CASPubMedWeb of Science®Google Scholar Shoemaker VH, Nagy KA. 1977. Osmoregulation in amphibians and reptiles. Annu Rev Physiol 39: 449–471. Medline 10.1146/annurev.ph.39.030177.002313 CASPubMedWeb of Science®Google Scholar Siebens AW, Spring KR. 1989. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells. Am J Physiol 257: F937–F946. Medline CASPubMedWeb of Science®Google Scholar Silbernagl S. 1988. The renal handling of amino acids and oligopeptides. Physiol Rev 68: 911–1007. Medline 10.1152/physrev.1988.68.3.911 CASPubMedWeb of Science®Google Scholar Silbernagl S, Völker K, Lang H-J, Dantzler WH. 1997. Taurine reabsorption by a carrier interacting with furosemide in short and long Henle's loops of rat nephrons. Am J Physiol 272: F205–F213. CASPubMedWeb of Science®Google Scholar Sizeland PC, Chambers ST, Lever M, Bason LM, Robson RA. 1993. Organic osmolytes in human and other mammalian kidneys. Kidney Int 43: 448–453. Medline 10.1038/ki.1993.66 PubMedWeb of Science®Google Scholar Sizeland PC, Chambers ST, Lever M, Bason LM, Robson RA. 1995. Short-term response of nonurea organic osmolytes in human kidney to a water load and water deprivation. Am J Physiol 268: F227–F233. Medline CASPubMedWeb of Science®Google Scholar Smardo F, Burg M, Garcia-Perez A. 1992. Kidney aldose reductase gene transcription is osmotically regulated. Am J Physiol 262: C776–C782. Medline CASPubMedWeb of Science®Google Scholar Strange K, Emma F, Jackson PS. 1996. Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol 270: C711–C730. 10.1152/ajpcell.1996.270.3.C711 CASPubMedWeb of Science®Google Scholar Takenaka M, Preston AS, Kwon HM, Handler JS. 1994. The tonicity-sensitive element that mediates increased transcription of the betaine transporter gene in response to hypertonic stress. J Biol Chem 269: 29379–29381. Medline CASPubMedWeb of Science®Google Scholar Takenaka M, Bagnasco SM, Preston AS, Uchida S, Yamauchi A, Kwon HM, Handler JS. 1995. The canine betaine gamma-amino-n-butyric acid transporter gene: diverse mRNA isoforms are regulated by hypertonicity and are expressed in a tissue-specific manner. Proc Natl Acad Sci USA 92: 1972–1076. 10.1073/pnas.92.4.1072 CASWeb of Science®Google Scholar Tinel H, Wehner F, Kinne RKH. 1997. Arachidonic acid as a second messenger for hypotonicity-induced calcium transients in rat IMCD cells. Pflügers Arch 433: 245–253. Medline 10.1007/s004240050274 CASPubMedWeb of Science®Google Scholar Trachtman H, Lu P, Sturman JA. 1993. Immunohistochemical localization of taurine in rat renal tissue: studies in experimental disease states. J Histochem Cytochem 41: 1209–1216. Medline 10.1177/41.8.8331284 CASPubMedWeb of Science®Google Scholar Uchida S, Green N, Coon H, Triche T, Mims S, Burg M. 1987. High NaCl induces stable changes in phenotype and karyotype of renal cells in culture. Am J Physiol 253: C230–C242. Medline 10.1152/ajpcell.1987.253.2.C230 CASPubMedWeb of Science®Google Scholar Uchida S, Kwon HM, Preston AS, Handler JS. 1991a. Expression of Madin-Darby canine kidney cell Na+- and Cl–-dependent taurine transporter in Xenopus laevis oocytes. J Biol Chem 266: 9605–9609. Medline CASPubMedWeb of Science®Google Scholar Uchida S, Nakanishi T, Kwon HM, Preston AS, Handler JS. 1991b. Taurine behaves as an osmolyte in Madin-Darby canine kidney cells: protection bypolarized, regulated transport of taurine. J Clin Invest 88: 656–662. Medline 10.1172/JCI115350 CASPubMedWeb of Science®Google Scholar Uchida S, Kwon HM, Yamauchi A, Preston AS, Marumo F, Handler JS. 1992. Molecular cloning of the cDNA for an MDCK cell Na+- and Cl–-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci USA 89: 8230–8234. 10.1073/pnas.89.17.8230 CASPubMedWeb of Science®Google Scholar Veis JH, Molitoris BA, Teitelbaum I, Mansour JA, Berl T. 1991. Myo-inositol uptake by rat cultured inner medullary collecting tubule cells: effect of osmolality. Am J Physiol 260: F619–F625. Medline CASPubMedWeb of Science®Google Scholar von Recklinghausen IR, Scott DM, Jans AWH. 1991. An NMR spectroscopic characterization of a new epithelial cell line, TALH-SVE, with properties of the renal medullary thick ascending limb of Henle's loop. Biochim Biophys Acta 1091: 179–187. Medline 10.1016/0167-4889(91)90059-7 CASPubMedWeb of Science®Google Scholar Wiese TJ, Matsushita K, Lowe WL Jr, Stokes JB, Jorek MA. 1996. Localization and regulation of renal Na+/myo-inositol cotransporter in diabetic rats. Kidney Int 50: 1202–1211. Medline 10.1038/ki.1996.429 CASPubMedWeb of Science®Google Scholar Wirthensohn G, Vandewalle A, Guder WG. 1981. Renal glycerol metabolism and the distribution of glycerol kinase in rabbit nephron. Biochem J 198: 543–549. Medline 10.1042/bj1980543 CASPubMedWeb of Science®Google Scholar Wirthensohn G, Vandewalle A, Guder WG. 1982. Choline kinase activity along the rabbit nephron. Kidney Int 21: 877–879. Medline 10.1038/ki.1982.112 CASPubMedWeb of Science®Google Scholar Wirthensohn G, Beck FX, Guder WG. 1987. Role and regulation of glycerophosphorylcholine in rat renal papilla. Pflügers Arch 409: 411–415. Medline 10.1007/BF00583795 CASPubMedWeb of Science®Google Scholar Wirthensohn G, Lefrank S, Schmolke M, Guder WG. 1989. Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am J Physiol 256: F128–F135. Medline CASPubMedWeb of Science®Google Scholar Wojtaszek PA, Heaskey LE, Siriwardana G, Berl T. 1998. Dominant-negative c-Jun NH2-terminal kinase 2 sensitizes renal inner medullary collecting duct cells to hypertonicity-induced lethality independent of organic osmolyte transport. J Biol Chem 273: 800–804. Medline 10.1074/jbc.273.2.800 CASPubMedWeb of Science®Google Scholar Wolff NA, Kinne R. 1988. Taurine transport by rabbit kidney brush-border membranes: coupling to sodium, chloride, the membrane potential. J Membrane Biol 102: 131–139. Medline 10.1007/BF01870451 CASPubMedWeb of Science®Google Scholar Wunz T, Wright SH. 1993. Betaine transport in rabbit renal brush-border membrane vesicles. Am J Physiol 264: F948–F955. Medline CASPubMedWeb of Science®Google Scholar Yamauchi A, Kwon HM, Uchida S, Preston AS, Handler JS. 1991. Myo-inositol and betaine transporters regulated by tonicity are basolateral in MDCK cells. Am J Physiol 261: F197–F202. Medline CASPubMedWeb of Science®Google Scholar Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, Garcia-Perez A, Burg MB, Handler JS. 1992. Cloning of a Na+- and Cl–-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem 267: 649–652. Medline CASPubMedWeb of Science®Google Scholar Yamauchi A, Uchida S, Preston AS, Kwon HM, Handler JS. 1993. Hypertonicity stimulates transcription of gene for Na+-myo-inositol cotransporter in MDCK cells. Am J Physiol 264: F20–F23. CASPubMedWeb of Science®Google Scholar Yamauchi A, Nakanishi T, Takamitsu Y, Sugita M, Imai E, Noguchi T, Fujiwara Y, Kamada T, Ueda N. 1994. In vivo osmoregulation of Na/myo-inositol cotransporter mRNA in rat kidney medulla. J Am Soc Nephrol 5: 62–67. Medline CASPubMedWeb of Science®Google Scholar Yamauchi A, Miyai A, Shimada S, Minami Y, Tohyama M, Imai E, Kamada T, Ueda N. 1995. Localization and rapid regulation of Na+/myo-inositol cotransporter in rat kidney. J Clin Invest 96: 1195–1201. Medline 10.1172/JCI118151 CASPubMedWeb of Science®Google Scholar Yancey PH, Burg MB. 1989. Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am J Physiol 257: F602–F607. Medline CASPubMedWeb of Science®Google Scholar Yancey PH, Burg MB. 1990. Counteracting effects of urea and betaine in mammalian cells in culture. Am J Physiol 258: R198–R204. CASPubMedWeb of Science®Google Scholar Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. 1982. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222. Medline 10.1126/science.7112124 CASPubMedWeb of Science®Google Scholar Yancey PH, Haner PG, Freudenberger TH. 1990. Effects of an aldose reductase inhibitor on organic osmotic effectors in rat renal medulla. Am J Physiol 259: F733–F738. CASPubMedWeb of Science®Google Scholar Zablocki K, Miller S, Garcia-Perez A, Burg M. 1991. Accumulation of glycerophosphorylcholine by renal cells: osmotic regulation of GPC:choline phosphodiesterase. Proc Natl Acad Sci USA 88: 7820–7824. 10.1073/pnas.88.17.7820 CASPubMedWeb of Science®Google Scholar Zaghow M. 1991. Untersuchungen zur Regulation von organischen Osmolyten in der inneren Medulla der Kaninchenniere. PhD thesis, Universität Hannover. Google Scholar Citing Literature Volume283, Issue71 June 1999Pages 708-724 ReferencesRelatedInformation

Referência(s)