The Epithelial to Mesenchymal Transition and Metastatic Progression in Carcinoma
1996; Wiley; Volume: 2; Issue: 1 Linguagem: Inglês
10.1111/j.1524-4741.1996.tb00076.x
ISSN1524-4741
AutoresChristine Gilles, Erik W. Thompson,
Tópico(s)Kruppel-like factors research
ResumoThe Breast JournalVolume 2, Issue 1 p. 83-96 The Epithelial to Mesenchymal Transition and Metastatic Progression in Carcinoma Christine Gilles, Christine Gilles Departments of Cell Biology University Medical Center, Washington D. C. Departments of Lombardi Cancer Center, Georgetown, University Medical Center, Washington D. C.Search for more papers by this authorErik W. Thompson, Corresponding Author Erik W. Thompson Departments of Cell Biology University Medical Center, Washington D. C. Departments of Orthopedic Surgery; University Medical Center, Washington D. C. Departments of Lombardi Cancer Center, Georgetown, University Medical Center, Washington D. C.Erik Thompson, Lom-bardi Cancer Center, Rm. W416 TRB, Georgetown University Medical Center, 3970 Reservoir Rd., N. W. Washington, DC 20007, U. S. A.Search for more papers by this author Christine Gilles, Christine Gilles Departments of Cell Biology University Medical Center, Washington D. C. Departments of Lombardi Cancer Center, Georgetown, University Medical Center, Washington D. C.Search for more papers by this authorErik W. Thompson, Corresponding Author Erik W. Thompson Departments of Cell Biology University Medical Center, Washington D. C. Departments of Orthopedic Surgery; University Medical Center, Washington D. C. Departments of Lombardi Cancer Center, Georgetown, University Medical Center, Washington D. C.Erik Thompson, Lom-bardi Cancer Center, Rm. W416 TRB, Georgetown University Medical Center, 3970 Reservoir Rd., N. W. Washington, DC 20007, U. S. A.Search for more papers by this author First published: January 1996 https://doi.org/10.1111/j.1524-4741.1996.tb00076.xCitations: 58AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL REFERENCES 1 Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993; 9: 541– 73. 2 Thiery JP, Duband JL, Tucker GC. Cell migration in the vertebrate embryo: role of cell adhesion and tissue environ-mentin pattern formation. Annu Rev Cell Biol 1985; 1: 91– 113. 3 Kolega J. The cellular basis of epithelial morphogenesis. In: LW Browder, ed. Developmental Biology. New York : Plenum Press, 1986: 103– 42. 4 Hay ED. Epithelial-mesenchymal transitions. Semin Dev Biol 1990; 1: 347– 56. 5 Savagner P, Boyer B, Valles AM, et al. Modulations of the epithelial phenotype during embryogenesis and cancer progression. In: R Dickson, M Lippman, eds. Mammary Tumori-genesis and Malignant Progression. Kluwer Academic Publishers, 1994; 12: 229– 49. 6 Guarino M. Epithelial-to-mesenchymal change of differentiation. From embryogenetic mechanism to pathological patterns. Histol Pathol 1995; 10: 171– 84. 7 Osborn M, Debus E, Weber K. Monoclonal antibodies specific for vimentin. Eur Cell Biol 1984; 34(1): 137– 43. 8 Bernal SD, Stahel RA. Cytoskeleton-associated proteins: their role as cellular integrators in the neoplastic process. CritRev OncolHematol 1985; 3(3): 191– 204. 9 Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 1994; 63: 345– 82. 10 Clarke R, Leonessa F, Brunner N, et al. In vitro models of human breast cancer. In: JR Harris, ME Lippman, M Morrow, S Hellman, eds. Diseases of the Breast. Philadelphia : Lippincott-Raven, 1995: 245– 261. 11 Thompson EW, Reich R, Martin GR, et al. Factors regulating basement membrane invasion by tumor cells. In: ME Lippman, RB Dickson, eds. Breast Cancer: Cellular and Molecular Biology. Boston : Kluwer Academic Publishers, 1988: 239– 49. 12 Thompson EW, Paik S, Brunner N, et al. Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 1992; 150(3): 534– 44. 13 Sommers CL, Walker-Jones D, Heckford SE, et al. Vimentin rather than keratin expression in some hormone-independent breast cancer cell lines and in oncogene-transformed mammary epithelial cells. Cancer Res 1989; 49(15): 4258– 63. 14 Sommers CL, Skerker JM, Chrysogelos SA, Bosseler M, Gelmann EP. Regulation of vimentin gene transcription in human breast cancer cell lines. Cell Growth Differ 1994; 5(8): 839– 46. 15 Angus B, Kiberu S, Purvis J, Wilkinson L, Home CH. Cytokeratins in cervical dysplasia and neoplasia: a comparative study of immunohistochemical staining using monoclonal antibodies NCL-5D3, CAM 5.2, and PKK1. J Pathol 1988; 155(1): 71– 5. 16 Gigi-Leitner O, Geiger B, Levy R, Czernobilsky B. Cy-tokeratin expression in squamous metaplasia of the human uterine cervix. Differentiation 1986; 31(3): 191– 205. 17 Sommers CL, Thompson EW, Torri JA, Kemler R, Gelmann EP, Byers SW. Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities. Cell Growth Differ 1991; 2(8): 365– 72. 18 Sommers CL, Heckford SE, Skerker JM, et al. Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 1992; 52(19): 5190– 7. 19 Stampfer MR, Bartley JC. Human mammary epithelial cells in culture: Differentiation and transformation. In: ME Lippman, RB Dickson, eds. Breast Cancer: Cellular and Molecular Biology. Boston : Kluwer Academic Publishers, 1988: 1– 24. 20 Stampfer MR. Isolation and growth of human mammary epithelial cells. J Tiss CultMetb 1985; 9: 107– 16. 21 Soule HD, Maloney TM, Wolman SR, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 1990; 50(18): 6075– 86. 22 Clark R, Stampfer MR, Milley R, et al. Transformation of human mammary epithelial cells by oncogenic retroviruses. Cancer Res 1988; 48(16): 4689– 94. 23 Thompson EW, Torri J, Sabol M, et al. Oncogene-in-duced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 1994; 12: 181– 94. 24 Calaf G, Russo J. Transformation of human breast epithelial cells by chemical carcinogens. Carcinogenesis 1993; 14(3): 483– 92. 25 Calaf G, Zhang PL, Alvarado MV, Estrada S, Russo J. C-Ha-ws enhances the neoplastic transformation of human breast epithelial cells treated with chemical carcinogens. Int J Oncology 1995; 6: 5– 11. 26 Pauley RJ, Henry N, Reddy K, et al. Differential gene expression during breast cancer development. Am Association for Cancer Res 1995; 36. Abstract. 3704: 622. 27 Miller FR, Soule HD, Tait L, Pauley RJ, Wolman SR, Dawson PJ, Heppner GH. Xenograft model of progressive human proliferative breast disease. J Natl Cancer Inst 1993; 85(21): 1725– 32. 28 Giuncluglio D, Culty M, Fassina G, et al. Invasive phenotype of MCF-10A cells overexpressing c-Ha-ras and c-erbB-2 oncogenes. Int J Cancer. In press. 29 Birkedal-Hansen H, Moore WG, Bodden MK, et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993; 4(2): 197– 250. 30 Stetler-Stevenson WG, Liotta LA, Kleiner DE. Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J 1993; 7(15): 1434– 41. 31 Polette M, Clavel C, Cockett M, Girod de Bentzmann S, Murphy G, Birembaut P. Detection and localization of mR-NAs encoding matrix metalloproteinases and their tissue inhibitor in human breast pathology. Invasion Metastasis 1993; 13(1): 31– 37. 32 Polette M, Gilbert N, Stas I, et al. Gelatinase A expression and localization in human breast cancers. An in situ hy- bridization study and immunohistochemical detection using confocal microscopy. Virchows Arch 1994; 424(6): 641– 65. 33 Azzam HS, Thompson EW. Collagen-induced activation of the Mr 72, 000 type IV collagenase in normal and malignant human fibroblastoid cells. Cancer Res 1992; 52(16): 4540– 4. 34 Azzam HS, Arand G, Lippman ME, Thompson EW. Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst 1993; 85(21): 1758– 64. 35 Bae SN, Arand G, Azzam H, et al. Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in matrigel-based in vitro assays. Breast Cancer Res Treat 1993; 24(3): 241– 55. 36 Thompson EW, Yu M, Bueno J, et al. Collagen induced MMP-2 activation in human breast cancer. Breast Cancer Res Treat 1994; 31: 357– 70. 37 Sato H, Takino T, Okada Y, et al. A matrix metallo-proteinase expressed on the surface of invasive tumor cells. Nature 1994; 370: 61– 65. 38 Pulyaeva H, Washington D, Bueno J, et al. MT-MMP and gelatinase A activation in human breast cancer cells. Am Association for Cancer Res 1995; 36 Abstract 591: 99. 39 Yu M, Sato H, Seiki M, Thompson EW. Complex regulation of membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation by concanavalin A in MDA-MB-231 human breast cancer cells. Cancer Res 1995; 55: 3272– 77. 40 Gilles C, Piette J, Rombouts S, Laurent C, Foidart JM. Immortalization of human cervical keratinocytes by human papillomavirus type 33. Int J Cancer 1993; 53(5): 872– 79. 41 Gilles C, Piette J, Peter W, Fusenig NE, Foidart JM. Differentiation ability and oncogenic potential of HPV-33- and HPV-33 + ras-transfected keratinocytes. Int J Cancer 1994; 58(6): 847– 54. 42 Gilles C, Polette M, Piette J, Birembaut P, Foidart JM. Epithelial-to-mesenchymal transition in HPV-33-transfected cervical keratinocytes is associated with increased invasiveness and expression of gelatinase A. Int J Cancer 1994; 59(5): 661– 66. 43 Gilles C, Polette M, Piette J, Thompson EW, Birembaut P, Foidart JM. High level of MT-MMP expression is associated with invasiveness of cervical cancer cells. Int J Cancer 1995. In press. 44 Dulbecco R, Henahan M, Bowman M, Okada S, Bat-tifora H, Unger M. Generation of fibroblast-like cells from cloned epithelial mammary cells in vitro: a possible new cell type. Proc Natl Acad Sci USA 1981; 78(4): 2345– 49. 45 Rudland PS, Paterson FC, Monaghan P, Davies AC, Warburton MJ. Isolation and properties of rat cell lines morphologically intermediate between cultured mammary epithelial and myoepithelial-like cells. Dev Biol 1986; 113(2): 388– 405. 46 Pagan R, Llobera M, Vilaro S. Epithelial-mesenchy-mal transition in cultured neonatal hepatocytes. Hepatology 1995; 21(3): 820– 31. 47 Summerhayes IC, Cheng YS, Sun TT, Chen LB. Expression of keratin and vimentin intermediate filaments in rabbit bladder epithelial cells at different stages of benzo[a]pyrene-induced neoplastic progression. J Cell Biol 1981; 90(1): 63– 69. 48 Nakanishi H, Taylor RM, Hawkins AL, Griffin CA, Martin GR, Passaniti A. Establishment of hormone-dependent and hormone-independent carcinoma cell lines with different metastatic potentials from spontaneous mammary tumors in aged wistar rats. Int J Cancer 1994; 58(4): 592– 601. 49 Nakanishi H, Taylor RM, Chrest FJ, et al. Progression of hormone-dependent adenocarcinoma cells to hormone-independent spindle carcinoma cells in vitro in a clonal spontaneous rat mammary tumor cell line. Cancer Res 1995; 55(2): 399– 407. 50 Franke WW, Schmid E, Winter S, Osborn M, Weber K. Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res 1979; 123(1): 25– 46. 51 Giese G, Traub P. Induction of vimentin synthesis in a murine myeloma cell line byTPA is strongly dependent on the composition of the cell culture medium. Eur J Cell Biol 1988; 47(2): 291– 99. 52 Taylor-Papadimitriou J, Stampfer M, Bartek J, et al. Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo pheno-types and influence of medium. J Cell Sci 1989; 94: 403– 13. 53 Connell ND, Rheinwald JG. Regulation of the cyrosk-eleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 1983; 34(1): 245– 53. 54 Regenass U, Geleick D, Curschellas E, Meyer T, Fab-bro D. In vitro cultures of epithelial cells from healthy breast tissues and cells from breast carcinomas. Recent Results Cancer Res 1989; 113: 4– 15. 55 Werb Z, Hembry RM, Murphy G, Aggeler J. Commitment to expression of the metalloendopeptidases, collage-nase and stromelysin: relationship of inducing events to changes in cytoskeletal architecture. J Cell Biol 1986; 102(3): 697– 702. 56 MacDougall JR, Kerbel RS. Constitutive production of 92-kDa gelatinase B can be suppressed by alterations in cell shape. Exp Cell Res 1995; 218: 508– 15. 57 Ben-Ze'ev A, Raz A. Relationship between the organization and synthesis of vimentin and the metastatic capability of B16 melanoma cells. Cancer Res 1985; 45(6): 2632– 41. 58 Osborn M, Weber K. Intermediate filaments: cell-type-specific markers in differentiation and pathology. Cell 1982; 31: 303– 6. 59 Osborn M, Weber K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest 1983; 48(4): 372– 94. 60 Leader M, Collins M, Patel J, Henry K. Vimentin: an evaluation of its role as a tumour marker. Histopatbology 1987; 11(1): 63– 72. 61 Miettinen M, Lehto VP, Virtanen I. Expression of intermediate filaments in normal ovaries and ovarian epithelial, sex cord-stromal, and germinal tumors. Int J Gynecol Pathol 1983; 2(1): 64– 71. 62 Miettinen M, Franssila K, Lehto VP, Paasivuo R, Virtanen, I. Expression of intermediate filament proteins in thyroid gland and thyroid tumors. Lab Invest 1984; 50(3): 262– 70. 63 McNutt MA, Bolen JW, Gown AM, Hammar SP, Vo-gel AM. Coexpression of intermediate filaments in human epithelial neoplasms. Ultrastruct Pathol 1985; 9: 31– 43. 64 Gatter KC, Dunnill MS, Van Muijen GN, Mason DY. Human lung tumours may coexpress different classes of intermediate filaments. J Clin Pathol 1986; 39(9): 950– 54. 65 Upton MP, Hirohashi S, Tome Y, Miyazawa N, Sue-masu K, Shimosato Y. Expression of vimentin in surgically resected adenocarcinomas and large cell carcinomas of lung. Am J Surg Pathol 1986; 10(8): 560– 67. 66 Azumi N, Battifora H. The distribution of vimentin and keratin in epithelial and nonepithelial neoplasms, a comprehensive immunohistochemical study on formalin- and alcohol-fixed tumors. Am J Clin Pathol 1987; 88(3): 286– 96. 67 Benjamin E, Law S, Bobrow LG. Intermediate filaments cytokeratin and vimentin in ovarian sex cord-stromal tumours with correlative studies in adult and fetal ovaries. J Pathol 1987; 152(4): 253– 63. 68 Buley ID, Gatter KC, Heryet A, Mason DY. Expression of intermediate filament proteins in normal and diseased thyroid glands. J Clin Pathol 1987; 40(2): 136– 42. 69 Doglioni C, Dell'Orto P, Coggi G, Iuzzolino P, Bon-tempini L, Viale G. Choroid plexus tumors. An immunocy-tochemical study with particular reference to the coexpression of intermediate filament proteins. Am J Pathol 1987; 127(3): 519– 29. 70 Viale G, Gambacorta M, Dell'Orto P, Coggi G. Coexpression of cytokeratins and vimentin in common epithelial tumours of the ovary: an immunocytochemical study of eighty-three cases. Virchows Arch A Pathol Anat Histopathol 1988; 413(2): 91– 101. 71 Ikegawa S, Saida T, Takizawa Y, et al. Vimentin-posi-tive squamous cell carcinoma arising in a burn scar. A highly malignant neoplasm composed of acantholytic round kerati-nocytes. Arch Dermatol 1989; 125(12): 1672– 76. 72 Santini D, Bazzocchi F, Paladini G, et al. Intermediate-sized filament proteins (keratin, vimentin, desmin) in metaplastic carcinomas, carcinosarcomas and stromal sarcomas of the breast. Int JBiol Markers 1987; 2(2): 83– 86. 73 Raymond WA, Leong AS. Vimentin-a new prognostic parameter in breast carcinoma J Pathol 1989; 158(2): 107– 14. 74 Raymond WA, Leong AS. Co-expression of cytokeratin and vimentin intermediate filament proteins in benign and neoplastic breast epithelium. J Pathol 1989; 157(4): 299– 306. 75 Domagala W, Wozniak L, Lasota J, Weber K, Osborn M. Vimentin is preferentially expressed in high-grade ductal and medullary, but not in lobular breast carcinomas. Am J Pathol 1990; 137(5): WS9– 64. 76 Domagala W, Lasota J, Dukowicz A, et al. Vimentin expression appears to be associated with poor prognosis in node-negative ductal NOS breast carcinomas. Am J Pathol 1990; 137(6): 1299– 304. 77 Domagala W, Lasota J, Bartkowiak J, Weber K, Os-born M. Vimentin is preferentially expressed in human breast carcinomas with low estrogen receptor and high Ki-67 growth fraction. Am J Pathol 1990; 136(1): 219– 27. 78 Heatley M, Whiteside C, Maxwell P, Toner P. Vimentin expression in benign and malignant breast epithelium. J Clin Pathol 1993; 46(5): 441– 45. 79 Domagala W, Striker G, Szadowska A, Dukowicz A, Harezga B, Osborn M. P53 protein and vimentin in invasive ductal NOS breast carcinoma-relationship with survival and sites of metastases. Eur Cancer 1994; 30A(10): 1527– 34. 80 Bell CD, Tischler EM, Laroye GJ. The relationship of cytoplasmic intermediate filaments and membrane antigens with hormone receptors, nuclear staining density, and mode of stromal invasion in human breast cancer. Breast Cancer Res Treat 1995; 33(2): 147– 62. 81 Battifora H. Spindle cell carcinoma: ultrastructural evidence of squamous origin and collagen production by the tumor cells. Cancer 1976; 37(5): 2275– 82. 82 Addis BJ, Corrin B. Pulmonary blastoma, carcinosarcoma and spindle-cell carcinoma: an immunohistochemical study of keratin intermediate filaments. J Pathol 1985; 147(4): 291– 301. 83 Gould VE, Battifora H. Origin and significance of the basal lamina and some interstitial fibrillar components in epithelial neoplasms. Pathol Annu 1976; 11: 353– 86. 84 Harris M. Spindle cell squamous carcinoma: ultra-structural observations. Histopathology 1982; 6(2): 197– 210. 85 Zarbo RJ, Crissman JD, Venkat H, Weiss MA. Spindle-cell carcinoma of the upper aerodigestive tract mucosa. An immunohistologic and ultrastructural study of 18 biphasic tumors and comparison with seven monophasic spindle-cell tumors. Am J Surg Pathol 1986; 10(11): 741– 53. 86 Brown DC, Theaker JM, Banks PM, Gatter KC, Mason DY. Cytokeratin expression in smooth muscle and smooth muscle tumours. Histopathology 1987; 11(5): 477– 86. 87 Guarino M, Reale D, Micoli G. The extracellular matrix in sarcomatoid carcinomas of the breast. Virchows Arch A Pathol AnatHistopathol 1993; 423(2): 131– 36. 88 Sherwin RP, Strong MS, Vaughn CW. Polypoid and junctional squamous cell carcinoma of the tongue and larynx with spindle cell carcinoma ("pseudosarcoma"). Cancer 1963; 16: 51– 60. 89 Ramaekers FC, Haag D, Kant A, Moesker O, Jap PH, Vooijs GP. Coexpression of keratin- and vimentin-type intermediate filaments in human metastatic carcinoma cells. Proc NatlAcadSci USA 1983; 80(9): 2618– 22. 90 Schaafsma HE, Van Der Velden LA, Manni JJ, et al. Increased expression of cytokeratins 8, 18 and vimentin in the invasion front of mucosal squamous cell carcinoma. J Pathol 1993; 170(1): 77– 86. 91 Gabbert H, Wagner R, Moll R, Gerharz CD. Tumor dedifferentiation: an important step in tumor invasion. Clin Exp Metastasis 1985; 3(4): 257– 79. 92 Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251: 1451– 55. 93 Behrens J. The role of cell adhesion molecules in cancer invasion and metastasis. Breast Cancer Res Treat 1993; 24(3): 175– 84. 94 Vessey CJ, Wilding J, Polarin N, et al. Altered expression and function of E-cadherin in cervical intraepithelial neoplasia and invasive squamous cell carcinoma. J Pathol 1995; 176: 151– 59. 95 Kolega J. The cellular basis of epithelial morphogenesis. In: LW Browder, eds. Developmental Biology. New York : Plenum Press, 1986: 103– 12. 96 Duband JL, Darribere T, Boucaut JC, et al. Regulation of development by extracellular matrix. In: E Elson, W Fra-zier, L Glaser, eds. Cell membranes. Methods and Reviews. New York : Plenum Press, 1987: 1– 53. 97 Hay ED. Extracellular matrix, cell skeletons, and embryonic development. Am J Med Genet 1989; 34(1): 14– 29. 98 Hay ED. Role of cell-matrix contacts in cell migration and epithelial-mesenchymal transformation. Cell Differ Dev 1990; 32(3): 367– 75. 99 Griffith CM, Hay ED. Epithelial-mesenchymal transformation during palatal fusion: carboxyfluorescein traces cells at light and electron microscopic levels. Development 1992; 116(4): 1087– 99. 100 Hay ED. Extracellular matrix alters epithelial differentiation. Curr Opin Cell Biol 1993; 5(6): 1029– 35. 101 Sundar Raj N, Rizzo JD, Anderson SC, Gesiotto JP. Expression of vimentin by rabbit corneal epithelial cells during wound repair. Cell Tissue Res 1992; 267(2): 347– 56. 102 Boyer B, Tucker GC, Valles AM, Franke WW, Thiery JP. Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J Cell Biol 1989; 109: 1495– 509. 103 Jouanneau J, Gavrilovic J, Caruelle D, et al. Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and invasive potential. Proc Natl Acad Sci USA 1991; 88(7): 2893– 97. 104 Tucker GC, Boyer B, Valles AM, Thiery JP. Combined effects of extracellular matrix and growth factors on NBT-II rat bladder carcinoma cell dispersion. J Cell Sci 1991; 100: 371– 80. 105 Gavrilovic J, Moens G, Thiery JP, Jouanneau J. Expression of transfected transforming growth factor alpha induces a motile fibroblast-like phenotype with extracellular matrix-degrading potential in a rat bladder carcinoma cell line. CellRegul 1990; 1(13): 1003– 14. 106 Boyer B, Dufour S, Thiery JP. E-cadherin expression during the acidic FGF-induced dispersion of a rat bladder carcinoma cell line. Exp Cell Res 1992; 201(2): 347– 57. 107 Valles AM, Boyer B, Badet J, Tucker GC, Barritault D, Thiery JP. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc NatlAcadSci USA 1990; 87(3): 1124– 28. 108 Valles AM, Tucker GC, Thiery JP, Boyer B. Alternative patterns of mitogenesis and cell scattering induced by acidic FGF as a function of cell density in a rat bladder carcinoma cell line. CellRegul 1990; 1(13): 975– 88. 109 Savagner P, Valles AM, Jouanneau J, Yamada KM, Thiery JP. Alternative splicing in fibroblast growth factor receptor 2 is associated with induced epithelial-mesenchymal transition in rat bladder carcinoma cells. Mol Biol Cell 1994; 5(8): 851– 62. 110 Matthay MA, Thiery JP, Lafont F, Stampfer F, Boyer B. Transient effect of epidermal growth factor on the motility of an immortalized mammary epithelial cell line. J Cell Sci 1993; 106: 869– 78. 111 Mooradian DL, McCarthy JB, Komanduri KV, Furcht LT. Effects of transforming growth factor-beta 1 on human pulmonary adenocarcinoma cell adhesion, motility, and invasion in vitro. J Natl Cancer Inst 1992; 84(7): 523– 7. 112 Chen JD, Kim JP, Zhang K, et al. Epidermal growth factor (EGF) promotes human keratinocyte locomotion on collagen by increasing the alpha 2 integrin subunit. Exp Cell Res 1993; 209(2): 216– 23. 113 Stracke ML, Krutzsch HC, Unsworth EJ, et al. Identification, purification, and partial sequence analysis of auto-taxin, a novel motility-stimulating protein. J Biol Chem 1992; 267(4): 2524– 29. 114 Liotta LA, Mandler R, Murano G, et al. Tumor cell autocrine motility factor. Proc Natl Acad Sci USA 1986; 83(10): 3302– 26. 115 Li Y, Bhargava MM, Joseph A, Jin L, Rosen EM, Goldberg ID. Effect of hepatocyte growth factor/scatter factor and other growth factors on motility and morphology of non-tumorigenic and tumor cells. In Vitro Cell Dev Biol Anim 1994; 30A(2): 105– 10. 116 Bellusci S, Moens G, Thiery JP, Jouanneau J. A scatter factor-like factor is produced by a metastatic variant of a rat bladder carcinoma cell line. J Cell Sci 1994; 107: 1277– 87. 117 Bellusci S, Moens G, Gaudino G, et al. Creation of an hepatocyte growth factor/scatter factor autocrine loop in carcinoma cells induces invasive properties associated with increased tumorigenicity. Oncogene 1994; 9(4): 1091– 99. 118 Liotta LA. Tumor invasion and metastases-role of the extracellular matrix: Rhoads memorial award lecture. Cancer Res 1986; 46(1): 1– 7. 119 Valles AM, Tucker GC, Boyer B, Jouanneau J, Moens G, Thiery JP. Scattering and motility activities of the extracellular matrix and growth factors on bladder carcinoma cells. Can- cer Invest 1990; 8(6): 655– 57. 120 Tucker GC, Boyer B, Gavrilovic J, Emonard H, Thiery JP. Collagen-mediated dispersion of nbt-ii rat bladder carcinoma cells. Cancer Res 1990; 50(1): 129– 37. 121 Kim JP, Chen JD, Wilke MS, Schall TJ, Woodley DT. Human keratinocyte migration on type IV collagen. Roles of heparin-binding site and alpha 2 beta 1 integrin. Eab Invest 1994; 71(3): 401– 8. 122 Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 1982; 95(1): 333– 39. 123 Guo M, Toda K, Grinnell F. Activation of human keratinocyte migration on type I collagen and fibronectin. J Cell Sci 1990; 96: 197– 205. 124 Hammar H. Wound healing. Int J Dermatol 1993; 32(1): 6– 15. 125 Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development 1993; 117(4): 1183– 98. 126 Aznavoorian S, Stracke ML, Krutzsch H, Schiffmann E, Liotta LA. Signal transduction for chemotaxis and hapto-taxis by matrix molecules in tumor cells. J Cell Biol 1990; 110(4): 1427– 38. 127 McCarthy JB, Basara ML, Palm SL, Sas DF, Furcht LT. The role of cell adhesion proteins-laminin and fibronectin-in the movement of malignant and metastatic cells. Cancer Metastasis Rev 1985; 4(2): 125– 52. 128 McCarthy JB, Furcht LT. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J. Cell Biol 1984; 98(4): 1474– 80. 129 Noel A, De Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere CM, Foidart JM. Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br] Cancer 1993; 68(5): 909– 15. 130 Liotta LA, Stracke ML, Aznavoorian SA, Beckner ME, Schiffmann E. Tumor cell motility. Semin Cancer Biol 1991; 2(2): 111– 14. 131 Van Roy F, Mareel M. Tumor invasion: effects of cell adhesion and motility. Trends Cell Biol 1992; 2: 163– 69. 132 Reichmann E, Schwarz H, Deiner EM, et al. Activation of an inducible c-/bsER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 1992; 71(7): 1103– 16. 133 Carey I, Zehner Z. Regulation of chicken vimentin gene expression by serum, phorbol ester, and growth factors: identification of a novel fibroblast growth factor-inducible element. Cell Growth Diff 1995; 6: 899– 908. 134 Dressier GR, Douglass EC. Pax-2 is a DNA-binding protein expressed in embryonic kidney and wilms tumor. Proc NatlAcadSci USA 1992; 89(4): 1179– 83. 135 Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J. 1991; 10(5): 1135– 47. 136 Lazzaro D, De SV, De ML, Lehtonen E, Cortese R. LFB1 and LFB3 homeoproteins are sequentially expressed during kidney development. Development 1992; 114: 469– 79. 137 Pritchard JK, Fleming S, Davidson D, et al. The candidate Wilms's tumor gene is involved in genitourinary development. Nature 1990; 346: 194– 97. 138 Ways K, Kukoly CA, de Vente J, et al. MCF-7 breast cancer cells transfected with protein kinase C-a exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. J Clin Invest 1995; 95: 1906– 15. Citing Literature Volume2, Issue1January 1996Pages 83-96 ReferencesRelatedInformation
Referência(s)