Artigo Revisado por pares

Chemical shift correlations in the 13C, 17O and 31P NMR spectra of some Mo(CO)4((PPh2O)2Y(R)R′) (Y(R) = P(O), Si(Me); R′ = alkyl, haloalkyl, aryl) and [Mo(CO)4(PPh2O)2]2Si complexes

1985; Elsevier BV; Volume: 280; Issue: 1 Linguagem: Inglês

10.1016/0022-328x(85)87067-4

ISSN

1872-8561

Autores

Gary M. Gray, Keith Redmill,

Tópico(s)

Synthesis and characterization of novel inorganic/organometallic compounds

Resumo

The syntheses and 13C, 17O, 29Si and 31P NMR spectra of a series of Mo(CO)4((PPh2O)2Y(R)R′) (Y(R) = P(O), Si(Me); R′=alkyl, haloalkyl, aryl) and [Mo(CO)4(PPh2O)2]2Si complexes are given. The chemical shift ranges of the cis and trans carbonyl 13C and 17O, phenyl C(1) 13C and 31P resonances are relatively large and, with the exception of the cis carbonyl 17O chemical shifts, the correlations between the chemical shifts of the various resonances are excellent. These correlations are consistent with the model of metal carbonyl 13C and 17O chemical shifts proposed by Bodner and Todd. In addition they allow the model to be extended to include the diphenylphosphinite 31P chemical shifts in these complexes. The excellent correlations may be due to the presence of the chelate ring which limits the rotation around the molybdenum-phosphorus bond and to the fact that all three groups directly bonded to the phosphorus remains constant.

Referência(s)