Artigo Revisado por pares

Cellular Metals Manufacturing

2002; Wiley; Volume: 4; Issue: 10 Linguagem: Catalão

10.1002/1527-2648(20021014)4

ISSN

1527-2648

Autores

H.N.G. Wadley,

Tópico(s)

Cellular and Composite Structures

Resumo

Advanced Engineering MaterialsVolume 4, Issue 10 p. 726-733 Research News Cellular Metals Manufacturing H.N.G. Wadley, H.N.G. WadleySearch for more papers by this author H.N.G. Wadley, H.N.G. WadleySearch for more papers by this author First published: 29 October 2002 https://doi.org/10.1002/1527-2648(20021014)4:10 3.0.CO;2-YCitations: 197AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Open cell, stochastic nickel foams are widely used for the electrodes and current collectors of metal – metal hydride batteries. Closed cell, periodic aluminum honeycomb is extensively used for the cores of light, stiff sandwich panel structures. Interest is now growing in other cell topologies and potential applications are expanding. For example cellular metals are being evaluated for impact energy absorption, for noise and vibration damping and for novel approaches to thermal management. Numerous methods for manufacturing cellular metals are being developed. As a basic understanding of the relationships between cell topology and the performance of cellular metals in each application area begins to emerge, interest is growing in processes that enable an optimized topology to be reproducibly created. For some applications, such as acoustic attenuation, stochastic metal foams are likely to be preferred over their periodically structured counterparts. Nonetheless, the average cell s ize, the cell size standard deviation, the relative density and the microstructure of the ligaments are all important to control. The invention of more stable processes and improved methods for on-line control of the cellular structure via in-situ sensing and more sophisticated control algorithms are likely to lead to significant improvements in foam topology. For load supporting applications, sandwich panels containing honeycomb cores are much superior to those utilizing stochastic foams, but they are more costly than stochastic foam core materials. Recently, processes have begun to emerge for making open cell periodic cell materials with triangular or pyramidal truss topologies. These have been shown to match the stiffness and strength of honeycomb in sandwich panels. New cellular metals manufacturing processes that use metal textiles and deformed sheet metal are being explored as potentially low cost manufacturing processes for these applications. These topologically optimized systems are opening up new multifunctional applications for cellular metals. REFERENCES 1 J. Banhart, Progr. Mater. Sci. 2001, 46, 559. 10.1016/S0079-6425(00)00002-5 CASWeb of Science®Google Scholar 2 V. I. Shapovalov, U.S. Patent 5,181,549 1993. Google Scholar 3 M.W. Kearns, P.A. Blenkinsop, A.C. Barber, T.W. Farthing, Int. J. Powder Metall. 1988, 24, 59. CASWeb of Science®Google Scholar 4 D.M. Elzey, H.N.G. Wadley, Acta Mater. 2001, 49, 849. 10.1016/S1359-6454(00)00395-5 CASWeb of Science®Google Scholar 5 I. Jin, L. D. Kenny, H. Sang, U.S. Patent 4,973,358 1990. Google Scholar 6 S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, U.S. Patent 4,713,277 1987. Google Scholar 7 ERG, Inc., Oakland USA, DUOCEL product data sheet, www.ergaerospace.com, 2000. Google Scholar 8 M. Grohn, D. Voss, C. Hintz, P. R. Sahm, in Cellular Metals and Metal Foaming Technology, (Eds.: J. Barnhart, M.F. Ashby, N. Fleck) MIT-Verlag Bremen 2001, pp. 197–202. Google Scholar 9 INCO Ltd, Canada, Incofoam Data Product Sheet, www.inco.com, 1998. Google Scholar 10 D.T. Queheillalt, D.D. Hass, D.J. Sypeck, and H.N.G. Wadley, J. Mater. Res. 2001, 16, 1028. 10.1557/JMR.2001.0143 CASWeb of Science®Google Scholar 11 C. Frame, url: www.porvair.com, 2000. Google Scholar 12 D. T. Queheillalt, Y. Katsumi, H. N. G. Wadley, in preparation, 2002. Google Scholar 13 M. Jackel, German Patent DE 3,210,770 1983. Google Scholar 14 A. R. Nagel, C. Uslu, K. J. Lee, J. K. Cochran, T. H. Sanders, Synthesis/Processing of Light Weight Metallic Materials II (Ed.: M. Ward-Close), TMS, Warrendale, PA, 1997, pp. 395–406. Google Scholar 15 F. Chen, D. He, in Metal Foams and Porous Metal Structures (Eds.: J. Banhart, M. F. Ashby, N. A. Fleck), MIT-Verlag Bremen 2001, pp. 163–166. Google Scholar 16 K.P. Dharmasena, D.J. Sypeck, P.A. Parrish, H.N.G. Wadley, Mat. Sci. Eng. A 2002, in press. Google Scholar 17 J.C. Wallach, L.J. Gibson, Int. J. Solids and Structures 2001, 38, 7181. 10.1016/S0020-7683(00)00400-5 Web of Science®Google Scholar 18 V.S. Deshpandem, N.A. Fleck, Int. J. Solids and Structures 2002, submitted. Google Scholar 19 S. Chiras, D.R. Mumm, A.G. Evans, N. Wicks, J.W. Hutchinson, K.P. Dharmasena, H.N.G. Wadley, S. Fichter, Int. J. Solids and Structures 2002, submitted. Google Scholar 20 D. J. Sypeck, H. N. G. Wadley, in Cellular Metals and Metal Foaming Technology (Eds.: J. Banhart, M. F. Ashby, N. Fleck), Verlag MIT, Bremen 2001, pp. 381–386. Google Scholar 21 D.J. Sypeck, H.N.G. Wadley, J. Mater. Res. 2001, 16, 890. 10.1557/JMR.2001.0117 CASWeb of Science®Google Scholar 22 J. Baumeister, H. Schrader, U.S. Patent 5,151,246 1992. Google Scholar 23 H. Stanzick, J. Banhart, L. Helfen, T. Baumbach (Eds.), 3rd Euroconference on Foams, Verlag MIT, Bremen 2000. Google Scholar 24 M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Woburn, MA, 2000. Google Scholar 25 A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, H.N.G. Wadley, Progr. Mater. Sci. 2001, 46, 309. 10.1016/S0079-6425(00)00016-5 CASWeb of Science®Google Scholar 26 T. J. Lu, D. J. Sypeck, H. N. G. Wadley, in preparation, 2002. Google Scholar 27 A.-M. Harte, S. Nicol, in Cellular Metals and Metal Foaming Technology (Eds.: J. Banhart, M. F. Ashby, N. A. Fleck), Verlag MIT, Bremen 2001, pp. 49–54. Google Scholar 28 D. J. Sypeck, H. N. G. Wadley, in Review of Progress in Quantitative Nondestructive Evaluation, Vol. 17 (Eds. D. O. Thompson, D. E. Chimenti), Plenum Press, New York 1998. Google Scholar 29 V. Gergely, T. W. Clyne, in MMCs and Metallic foams, Proc. Of Euromat ’99, Vol. 5 (Eds. T. W. Clyne, F. Simancik), Wiley-VCH, Weinheim, Germany 2000. Google Scholar 30 S. Hilgenfeldt, S.A. Koehler, H.A. Stone, Phys. Rev. Lett. 2001, 86, 4704. 10.1103/PhysRevLett.86.4704 CASPubMedWeb of Science®Google Scholar 31 H.N.G. Wadley, R. Vancheeswaran, JOM 1998, 50, 19. 10.1007/s11837-998-0063-6 CASWeb of Science®Google Scholar 32 J. Banhart, H. Stanzick, L. Helfen, T. Baumbach, Appl. Phys. Lett. 2001, 82, 1152. 10.1063/1.1350422 CASWeb of Science®Google Scholar 33 K. P. Dharmasena, H. N. G. Wadley, in Mat. Res. Soc. Symp. Proc. Vol. 521 (Eds. D. S. Schwartz, D. S. Shih, A. G. Evans, H. N. G. Wadley), MRS, Warrendale, PA, 1998, pp. 171–76. Google Scholar 34 D.T. Queheillalt, D.J. Sypeck, H.N.G. Wadley, Mat. Sci. Eng. A 2002, 323, 139. 10.1016/S0921-5093(01)01357-0 Web of Science®Google Scholar 35 T. Myoshi, M. Itoh, S. Akiyama, A. Kitahara, in Mat. Res. Soc. Symp. Proc. 521 (Eds.: D. S. Schwartz, D. S. Shih, A. G. Evans, H. N. G. Wadley), MRS, Warrendale, PA, 1998, p. 133. Google Scholar 36 V. Gergely, T. W. Clyne, in Mat. Res. Soc. Symp. Proc. 521 (Eds.: D. S. Schwartz, D. S. Shih, A. G. Evans, H. N. G. Wadley), MRS, Warrendale, PA, 1998, pp. 139–144. Google Scholar 37 V. Gergely, Ph.D. Diss., University of Cambridge 2000. Google Scholar 38 A.M. Hodge, D.C. Dunand, Intermetallics 2001, 19, 581. 10.1016/S0966-9795(01)00047-4 Web of Science®Google Scholar 39 K.P. Dharmasena, D.J. Sypeck, P.A. Parrish, H.N.G. Wadley, Mat. Sci. Eng. A 2002, in press. Google Scholar 40 D. J. Sypeck, P. A. Parrish, and H. N. G. Wadley, in Mat. Res. Soc. Symp. Proc. 521 (Eds.: D. S. Schwartz, D. S. Shih, A. G. Evans, H. N. G. Wadley), MRS, Warrendale, PA, 1998, pp. 205–210. Google Scholar 41 K. M. Hurysz, J. L. Clark, A. R. Nagel, C. U. Hardwicke, K. J. Lee, J. K. Cochran, T. H. Sanders, in Mat. Res. Soc. Symp. Proc. 521 (Eds.: D. S. Schwartz, D. S. Shih, A. G. Evans, H. N. G. Wadley), MRS, Warrendale, PA, 1998, pp. 191–204. Google Scholar 42 Jonathon Aerospace Materials website (www.jamcorp.com). Google Scholar 43 N. Wicks, J.W. Hutchinson, Int. J. Solids and Structures 2002, submitted. Google Scholar 44 D.R. Mumm, S. Chiras, A.G. Evans, J.W. Hutchinson, D.J. Sypeck, H.N.G. Wadley, Int. J. Mech. Sci. 2002, in press. Google Scholar Citing Literature Volume4, Issue10October, 2002Pages 726-733 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX