Wave-Emplaced Coarse Debris and Megaclasts in Ireland and Scotland: Boulder Transport in a High-Energy Littoral Environment: A Discussion
2010; University of Chicago Press; Volume: 118; Issue: 6 Linguagem: Inglês
10.1086/656357
ISSN1537-5269
AutoresAdrian M. Hall, James D. Hansom, David M. Williams,
Tópico(s)Underground infrastructure and sustainability
ResumoPrevious articleNext article Discussion and ReplyWave-Emplaced Coarse Debris and Megaclasts in Ireland and Scotland: Boulder Transport in a High-Energy Littoral Environment: A DiscussionA. M. Hall, J. D. Hansom, and D. M. WilliamsA. M. HallDepartment of Geography, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom(e-mail: [email protected])1Present address: Fettes College, Edinburgh EH4 1QX, Scotland. Search for more articles by this author , J. D. Hansom2Department of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom. Search for more articles by this author , and D. M. Williams3Department of Earth and Ocean Sciences, National University of Ireland, Galway, Ireland. Search for more articles by this author PDFPDF PLUSFull Text Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by The Journal of Geology Volume 118, Number 6November 2010 Article DOIhttps://doi.org/10.1086/656357 Views: 84Total views on this site Citations: 35Citations are reported from Crossref HistoryReceived February 21, 2010 © 2010 by The University of Chicago. All rights reserved.PDF download Crossref reports the following articles citing this article:N.A.K. Nandasena, Giovanni Scicchitano, Giovanni Scardino, Maurilio Milella, Arcangelo Piscitelli, Giuseppe Mastronuzzi Boulder displacements along rocky coasts: A new deterministic and theoretical approach to improve incipient motion formulas, Geomorphology 407 (Jun 2022): 108217.https://doi.org/10.1016/j.geomorph.2022.108217Anja Scheffers, Wibke Erdmann Progress in Tsunami Science: Toward an Improved Integration of Hydrodynamical Modeling and Geomorphic Field Evidence, Geosciences 12, no.55 (May 2022): 209.https://doi.org/10.3390/geosciences12050209James P. Terry, A.Y. Annie Lau, Kim Anh Nguyen, Yuei-An Liou, Adam D. Switzer Clustered, Stacked and Imbricated Large Coastal Rock Clasts on Ludao Island, Southeast Taiwan, and Their Application to Palaeotyphoon Intensity Assessment, Frontiers in Earth Science 9 (Nov 2021).https://doi.org/10.3389/feart.2021.792369Adrian M. Hall, James D. Hansom, John E. Gordon Shetland, (Aug 2021): 135–150.https://doi.org/10.1007/978-3-030-71246-4_7Rónadh Cox, Fabrice Ardhuin, Frédéric Dias, Ronan Autret, Nicole Beisiegel, Claire S. Earlie, James G. Herterich, Andrew Kennedy, Raphaël Paris, Alison Raby, Pál Schmitt, Robert Weiss Systematic Review Shows That Work Done by Storm Waves Can Be Misinterpreted as Tsunami-Related Because Commonly Used Hydrodynamic Equations Are Flawed, Frontiers in Marine Science 7 (Feb 2020).https://doi.org/10.3389/fmars.2020.00004 Scheffers Megaboulder Movement by Superstorms: A Geomorphological Approach, Journal of Coastal Research (Jan 2020).https://doi.org/10.2112/JCOASTRES-D-19-00112.1David M. Kennedy, Josephine L.D. Woods, Larissa A. Naylor, James D. Hansom, Nick J. Rosser Intertidal boulder-based wave hindcasting can underestimate wave size: Evidence from Yorkshire, UK, Marine Geology 411 (May 2019): 98–106.https://doi.org/10.1016/j.margeo.2019.02.002David E. SMITH, Natasha L.M. BARLOW, Sarah L. BRADLEY, Callum R. FIRTH, Adrian M. HALL, Jason T. JORDAN, David LONG Quaternary sea level change in Scotland, Earth and Environmental Science Transactions of the Royal Society of Edinburgh 110, no.1-21-2 (Jan 2018): 219–256.https://doi.org/10.1017/S1755691017000469Dmitry Ruban, Alena Ponedelnik, Natalia Yashalova Megaclasts: Term Use and Relevant Biases, Geosciences 9, no.11 (Dec 2018): 14.https://doi.org/10.3390/geosciences9010014D. N. Thomas, P. W. Schmidt Paleomagnetic evidence for the emplacement mechanism of an enigmatic boulder accumulation on a coastal cliff top in New South Wales: implications for the Australian Megatsunami Hypothesis, Australian Journal of Earth Sciences 65, no.44 (May 2018): 503–515.https://doi.org/10.1080/08120099.2018.1464878Wibke Erdmann, Dieter Kelletat, Anja Scheffers Boulder transport by storms – Extreme-waves in the coastal zone of the Irish west coast, Marine Geology 399 (May 2018): 1–13.https://doi.org/10.1016/j.margeo.2018.02.003Ronan Autret, Guillaume Dodet, Serge Suanez, Gildas Roudaut, Bernard Fichaut Long–term variability of supratidal coastal boulder activation in Brittany (France), Geomorphology 304 (Mar 2018): 184–200.https://doi.org/10.1016/j.geomorph.2017.12.028Rónadh Cox, Kalle L. Jahn, Oona G. Watkins, Peter Cox Extraordinary boulder transport by storm waves (west of Ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits, Earth-Science Reviews 177 (Feb 2018): 623–636.https://doi.org/10.1016/j.earscirev.2017.12.014Rónadh Cox, Ward A. Lopes, Kalle L. Jahn Quantitative roundness analysis of coastal boulder deposits, Marine Geology 396 (Feb 2018): 114–141.https://doi.org/10.1016/j.margeo.2017.03.003John F. Dewey, Paul D. Ryan Storm, rogue wave, or tsunami origin for megaclast deposits in western Ireland and North Island, New Zealand?, Proceedings of the National Academy of Sciences 114, no.5050 (Nov 2017).https://doi.org/10.1073/pnas.1713233114Wibke Erdmann, Dieter Kelletat, Miriam Kuckuck Boulder Ridges and Washover Features in Galway Bay, Western Ireland, Journal of Coastal Research 335 (Sep 2017): 997–1021.https://doi.org/10.2112/JCOASTRES-D-16-00184.1P.J. Hearty, B.R. Tormey Sea-level change and superstorms; geologic evidence from the last interglacial (MIS 5e) in the Bahamas and Bermuda offers ominous prospects for a warming Earth, Marine Geology 390 (Aug 2017): 347–365.https://doi.org/10.1016/j.margeo.2017.05.009David M. Kennedy Where is the seaward edge? A review and definition of shore platform morphology, Earth-Science Reviews 147 (Aug 2015): 99–108.https://doi.org/10.1016/j.earscirev.2015.05.007Wibke Erdmann, Dieter Kelletat, Anja Scheffers, Simon K. Haslett Results from Field Work, (Apr 2015): 19–68.https://doi.org/10.1007/978-3-319-16333-8_3Wibke Erdmann, Dieter Kelletat, Anja Scheffers, Simon K. Haslett Introduction, (Apr 2015): 1–12.https://doi.org/10.1007/978-3-319-16333-8_1Daisuke Sugawara, Kazuhisa Goto, Bruce E. Jaffe Numerical models of tsunami sediment transport — Current understanding and future directions, Marine Geology 352 (Jun 2014): 295–320.https://doi.org/10.1016/j.margeo.2014.02.007Cherith A. Moses Chapter 4 The rock coast of the British Isles: shore platforms, Geological Society, London, Memoirs 40, no.11 (Jul 2014): 39–56.https://doi.org/10.1144/M40.4Frank T. Smith, Phillip L. Wilson Body-rock or lift-off in flow, Journal of Fluid Mechanics 735 (Oct 2013): 91–119.https://doi.org/10.1017/jfm.2013.464James P. Terry, A. Y. Annie Lau, Samuel Etienne The Scientific Value of Reef-Platform Boulders for Interpreting Coastal Hazards, (Apr 2013): 27–53.https://doi.org/10.1007/978-981-4451-33-8_3Samuel Etienne, James P. Terry Coral boulders, gravel tongues and sand sheets: Features of coastal accretion and sediment nourishment by Cyclone Tomas (March 2010) on Taveuni Island, Fiji, Geomorphology 175-176 (Nov 2012): 54–65.https://doi.org/10.1016/j.geomorph.2012.06.018Leslee Salzmann, Andrew Green Boulder emplacement on a tectonically stable, wave-dominated coastline, Mission Rocks, northern KwaZulu-Natal, South Africa, Marine Geology 323-325 (Sep 2012): 95–106.https://doi.org/10.1016/j.margeo.2012.07.001Rónadh Cox, Danielle B. Zentner, Brian J. Kirchner, and Mea S. Cook Boulder Ridges on the Aran Islands (Ireland): Recent Movements Caused by Storm Waves, Not Tsunamis, The Journal of Geology 120, no.33 (Jul 2015): 249–272.https://doi.org/10.1086/664787Kazuhisa Goto Current progress and perspectives of the research on tsunami boulders, Journal of the Sedimentological Society of Japan 71, no.22 (Jan 2012): 129–139.https://doi.org/10.4096/jssj.71.129N.A.K. Nandasena, Raphaël Paris, Norio Tanaka Numerical assessment of boulder transport by the 2004 Indian ocean tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia), Computers & Geosciences 37, no.99 (Sep 2011): 1391–1399.https://doi.org/10.1016/j.cageo.2011.02.001Raphaël Paris, Thomas Giachetti, Joël Chevalier, Hervé Guillou, Norbert Frank Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogos volcano, Sedimentary Geology 239, no.3-43-4 (Aug 2011): 129–145.https://doi.org/10.1016/j.sedgeo.2011.06.006Samuel Etienne, Mark Buckley, Raphaël Paris, Aruna K. Nandasena, Kate Clark, Luke Strotz, Catherine Chagué-Goff, James Goff, Bruce Richmond The use of boulders for characterising past tsunamis: Lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis, Earth-Science Reviews 107, no.1-21-2 (Jul 2011): 76–90.https://doi.org/10.1016/j.earscirev.2010.12.006Adrian M. Hall Storm wave currents, boulder movement and shore platform development: A case study from East Lothian, Scotland, Marine Geology 283, no.1-41-4 (May 2011): 98–105.https://doi.org/10.1016/j.margeo.2010.10.024Raphaël Paris, Larissa A. Naylor, Wayne J. Stephenson Boulders as a signature of storms on rock coasts, Marine Geology 283, no.1-41-4 (May 2011): 1–11.https://doi.org/10.1016/j.margeo.2011.03.016N.A.K. Nandasena, Raphaël Paris, Norio Tanaka Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis), Marine Geology 281, no.1-41-4 (Mar 2011): 70–84.https://doi.org/10.1016/j.margeo.2011.02.005 Anja Scheffers , Dieter Kelletat , and Sander Scheffers Wave-Emplaced Coarse Debris and Megaclasts in Ireland and Scotland: Boulder Transport in a High-Energy Littoral Environment: A Reply, The Journal of Geology 118, no.66 (Jul 2015): 705–709.https://doi.org/10.1086/656356
Referência(s)