A Small Portable Proton Exchange Membrane Fuel Cell and Hydrogen Generator for Medical Applications
1997; Lippincott Williams & Wilkins; Volume: 43; Issue: 3 Linguagem: Inglês
10.1097/00002480-199705000-00017
ISSN1538-943X
AutoresO.J. Adlhart, Peter Rohonyi, Dean Modroukas, J. Driller,
Tópico(s)Hydrogen Storage and Materials
ResumoSmall, lightweight power sources for total artificial hearts (TAH), left ventricular assist devices (LVAD), and other medical products are under development. The new power source will provide 2 to 3 times the capacity of conventional batteries. The implications of this new power source are profound. For example, for the Heartmate LVAD, 5 to 8 hours of operation are obtained with 3 lb of lead acid batteries (Personal Communication. Mr. Craig Sherman, Thermo Cardiosystems, Inc TCI 11/29/96). With the same weight, as much as 14 hours of operation appear achievable with the proton exchange membrane (PEM) fuel cell power source. Energy densities near 135 watt-hour/kg and 137 watt-hour/L are achievable. These values significantly exceed those of most conventional and advanced primary and secondary batteries. The improvement is mission dependent and even applies for the short deployment cited above. The comparison to batteries becomes even more favorable if the mission length is increased. The higher capacity requires only replacement of lightweight hydride cartridges and logistically available water. Therefore, when one spare 50 L hydride cartridge weighing 115 g is added to the reactant supply the energy density of the total system increases to 230 watt-hour/kg. This new power source is comprised of a hydrogen fueled, airbreathing PEM fuel cell and a miniature hydrogen generator (US Patent No. 5,514,353). The fuel cell is of novel construction and differs from conventional bipolar PEM fuel cells by the arrangement of cells on a single sheet of ion-exchange membrane. The construction avoids the weight and volume penalty of conventional bipolar stacks. The hydrogen consumed by the fuel cell is generated load-responsively In the miniature hydrogen generator, by reacting calcium hydride with water, forming in the process hydrogen and lime. The generator is cartridge rechargeable and available in capacities providing up to several hundred watt-hours of electric power.
Referência(s)