Artigo Revisado por pares

Overexpression of protein kinase Cα enhances lipopolysaccharide-induced nitric oxide formation in vascular smooth muscle cells

1998; Wiley; Volume: 176; Issue: 2 Linguagem: Inglês

10.1002/(sici)1097-4652(199808)176

ISSN

1097-4652

Autores

Shaohua Li, Freesia L. Huang, Qingping Feng, Jie Liu, Sharon Fan, Thomas M. McKenna,

Tópico(s)

Receptor Mechanisms and Signaling

Resumo

Journal of Cellular PhysiologyVolume 176, Issue 2 p. 402-411 Overexpression of protein kinase Cα enhances lipopolysaccharide-induced nitric oxide formation in vascular smooth muscle cells Shaohua Li, Corresponding Author Shaohua Li [email protected] Resuscitative Medicine Program, Naval Medical Research Institute, Bethesda, MarylandVascular Biology Group, The John P. Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 CanadaSearch for more papers by this authorFreesia L. Huang, Freesia L. Huang Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MarylandSearch for more papers by this authorQingping Feng, Qingping Feng Department of Pharmacology and Toxicology, University of Western Ontario, London, Ontario, CanadaSearch for more papers by this authorJie Liu, Jie Liu Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MarylandSearch for more papers by this authorSharon X. Fan, Sharon X. Fan Resuscitative Medicine Program, Naval Medical Research Institute, Bethesda, MarylandSearch for more papers by this authorThomas M. McKenna, Thomas M. McKenna Resuscitative Medicine Program, Naval Medical Research Institute, Bethesda, MarylandSearch for more papers by this author Shaohua Li, Corresponding Author Shaohua Li [email protected] Resuscitative Medicine Program, Naval Medical Research Institute, Bethesda, MarylandVascular Biology Group, The John P. Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 CanadaSearch for more papers by this authorFreesia L. Huang, Freesia L. Huang Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MarylandSearch for more papers by this authorQingping Feng, Qingping Feng Department of Pharmacology and Toxicology, University of Western Ontario, London, Ontario, CanadaSearch for more papers by this authorJie Liu, Jie Liu Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MarylandSearch for more papers by this authorSharon X. Fan, Sharon X. Fan Resuscitative Medicine Program, Naval Medical Research Institute, Bethesda, MarylandSearch for more papers by this authorThomas M. McKenna, Thomas M. McKenna Resuscitative Medicine Program, Naval Medical Research Institute, Bethesda, MarylandSearch for more papers by this author First published: 06 December 1998 https://doi.org/10.1002/(SICI)1097-4652(199808)176:2 3.0.CO;2-4Citations: 16AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Our previous studies showed that lipopolysaccharide (LPS)-induced nitric oxide (NO) synthesis in cardiovascular tissues is attenuated by protein kinase C (PKC) inhibitors. In the current study, we identify a specific PKC isotype involved in the LPS signal transduction pathway that leads to NO formation in rat vascular smooth muscle cells (VSMC). VSMC were transfected with a mammalian expression vector containing a full length PKCα cDNA insert, and a stable transfectant overexpressing PKCα was obtained as evidenced by increased expression of PKCα mRNA and protein. In response to 100 ng/ml LPS stimulation, the PKCα transfectants showed a 1.8-fold increase in PKC activity at 30 min and a twofold increase in NO production over 24 hr compared with cells transfected with control plasmids. The LPS-stimulated increase in NO synthesis in PKCα transfectants was blocked by the specific PKCα inhibitor Gö 6976. After 6 hr LPS treatment, PKCα-transfected and control cells showed equivalent increases in mRNA and protein for the inducible NO synthase. NO synthase activity of the cell extracts assayed in the presence of excess substrate and cofactors was not significantly different between PKCα-transfected and control cells after LPS stimulation. However, mRNA levels for GTP cyclohydrolase I, a key enzyme in (6R)-tetrahydro-L-biopterin synthesis, and cationic amino acid transporter-2, involved in L-arginine transport, was enhanced in cells overexpressing PKCα compared with control cells. These results suggest that PKCα plays an important role in LPS-induced NO formation and that a significant portion of this effect may be by means of enhanced substrate availability to the inducible nitric oxide synthase enzyme. J. Cell. Physiol. 176:402–411, 1998. © 1998 Wiley-Liss, Inc. Literature Cited Ali, S., Becker, M. W., Davis, M. G., and Dorn, G. W. (1994) Dissociation of vasoconstrictor-stimulated basic fibroblast growth factor expression from hypertrophic growth in cultured vascular smooth muscle cells. Relevant roles of protein kinase C. Circ. Res., 75: 836–843. 10.1161/01.RES.75.5.836 CASPubMedWeb of Science®Google Scholar Baydoun, A. R., Bogle, R. G., Pearson, J. D., and Mann, G. E. (1993) Selective inhibition by dexamethasone of induction of NO synthase, but not of induction of l-arginine transport, in activated murine macrophage J774 cells. Br. J. Pharmacol., 110: 1401–1406. 10.1111/j.1476-5381.1993.tb13976.x CASPubMedWeb of Science®Google Scholar Bredt, D. S., and Snyder, S. H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA, 86: 9030–9033. 10.1073/pnas.86.22.9030 CASPubMedWeb of Science®Google Scholar De Meyer, E., Van Hove, C. E., Feng, X. J., Rampart, M., and Herman, A. G. (1995) Thrombin triggers the de novo expression of an induc-ible NO synthase in porcine aortic valve endothelial cells. Eur. J. Pharmacol., 291: 67–72. 10.1016/0922-4106(95)90126-4 CASPubMedWeb of Science®Google Scholar Dean, N. M., McKay, R., Condon, T. P., and Bennett, C. F. (1994) Inhibition of protein kinase C-alpha expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J. Biol. Chem., 269: 16416–16424. CASPubMedWeb of Science®Google Scholar Diaz Meco, M. T., Dominguez, I., Sanz, L., Dent, P., Lozano, J., Municio, M. M., Berra, E., Hay, R. T., Sturgill, T. W., and Moscat, J. (1994) ζ PKC induces phosphorylation and inactivation of I kappa B-alpha in vitro. EMBO J., 13: 2842–2848. CASPubMedWeb of Science®Google Scholar Dominguez, I., Sanz, L., Arenzana Seisdedos, F., Diaz Meco, M. T., Virelizier, J. L., and Moscat, J. (1993) Inhibition of protein kinase C zeta subspecies blocks the activation of an NF-kappa B-like activity inXenopus laevis oocytes. Mol. Cell. Biol., 13: 1290–1295. 10.1128/MCB.13.2.1290 CASPubMedWeb of Science®Google Scholar Genot, E. M., Parker, P. J., and Cantrell, D. A. (1995) Analysis of the role of protein kinase C-alpha, -epsilon, and -zeta in T cell activation. J. Biol. Chem., 270: 9833–9839. 10.1074/jbc.270.17.9833 CASPubMedWeb of Science®Google Scholar Gill, D. J., Low, B. C., and Grigor, M. R. (1996) Interleukin-1 beta and tumor necrosis factor-alpha stimulate the cat-2 gene of the l-arginine transporter in cultured vascular smooth muscle cells. J. Biol. Chem., 271: 11280–11283. 10.1074/jbc.271.19.11280 CASPubMedWeb of Science®Google Scholar Godson, C., Bell, K. S., and Insel, P. A. (1993) Inhibition of expression of protein kinase C alpha by antisense cDNA inhibits phorbol ester-mediated arachidonate release. J. Biol. Chem., 268: 11946–11950. CASPubMedWeb of Science®Google Scholar Grandison, L., Nolan, G. P., and Pfaff, D. W. (1994) Activation of the transcription factor NF-KB in GH3 pituitary cells. Mol. Cell. Endocrinol., 106: 9–15. 10.1016/0303-7207(94)90180-5 CASPubMedWeb of Science®Google Scholar Grimm, S., and Baeuerle, P. A. (1993) The inducible transcription factor NF-kappa B: structure-function relationship of its protein sub-units. Biochem. J., 290: 297–308. 10.1042/bj2900297 CASPubMedWeb of Science®Google Scholar Gross, S. S., and Levi, R. (1992) Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J. Biol. Chem., 267: 25722–25729. CASPubMedWeb of Science®Google Scholar Haller, H., Lindschau, C., Quass, P., Distler, A., and Luft, F. C. (1995) Differentiation of vascular smooth muscle cells and the regulation of protein kinase C-alpha. Circ. Res., 76: 21–29. 10.1161/01.RES.76.1.21 CASPubMedWeb of Science®Google Scholar Hattori, Y., and Gross, S. S. (1993) GTP cyclohydrolase I mRNA is induced by LPS in vascular smooth muscle: characterization, sequence and relationship to nitric oxide synthase. Biochem. Biophys. Res. Commun., 195: 435–441. 10.1006/bbrc.1993.2062 CASPubMedWeb of Science®Google Scholar Henkel, T., Machleidt, T., Alkalay, I., Kronke, M., Ben Neriah, Y., and Baeuerle, P. A. (1993) Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature, 365: 182–185. 10.1038/365182a0 CASPubMedWeb of Science®Google Scholar Henrich, C. J., and Pichet, J. P. (1993) In situ assay of protein kinase C activation using a PKC-specific peptide substrate derived from myelin basic protein. Focus, 15: 54–55. Google Scholar Herbert, J. M., Augereau, J. M., Gleye, J., and Maffrand, J. P. (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun., 172: 993–999. 10.1016/0006-291X(90)91544-3 CASPubMedWeb of Science®Google Scholar Horowitz, A., Menice, C. B., LaPorte, R., and Morgan, K. G. (1996) Mechanisms of smooth muscle contraction. Physiol. Rev., 76: 967–1003. 10.1152/physrev.1996.76.4.967 CASPubMedWeb of Science®Google Scholar Hortelano, S., Genaro, A. M., and Bosca, L. (1992) Phorbol esters induce nitric oxide synthase activity in rat hepatocytes: Antagonism with the induction elicited by lipopolysaccharide. J. Biol. Chem., 267: 24937–24940. CASPubMedWeb of Science®Google Scholar Hortelano, S., Genaro, A. M., and Bosca, L. (1993) Phorbol esters induce nitric oxide synthase and increase arginine influx in cultured peritoneal macrophages. FEBS Lett., 320: 135–139. 10.1016/0014-5793(93)80078-9 CASPubMedWeb of Science®Google Scholar Inoguchi, T., Battan, R., Handler, E., Sportsman, J. R., Heath, W., and King, G. L. (1992) Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: Differential reversibility to glycemic control by islet cell transplantation. Proc. Natl. Acad. Sci. USA, 89: 11059–11063. 10.1073/pnas.89.22.11059 CASPubMedWeb of Science®Google Scholar Katoh, S., Sueoka, T., Yamamoto, Y., and Takahashi, S. Y. (1994) Phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein kinase C of sepiapterin reductase, the terminal enzyme in the biosynthetic pathway of tetrahydrobiopterin. FEBS Lett., 341: 227–232. 10.1016/0014-5793(94)80462-1 CASPubMedWeb of Science®Google Scholar Khalil, R. A., Lajoie, C., Resnick, M. S., and Morgan, K. G. (1992) Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle. Am. J. Physiol., 263: C714–C719. 10.1152/ajpcell.1992.263.3.C714 CASPubMedWeb of Science®Google Scholar Knopf, J. L., Lee, M. H., Sultzman, L. A., Kriz, R. W., Loomis, C. R., Hew-ick, R. M., and Bell, R. M. (1986) Cloning and expression of multiple protein kinase C cDNAs. Cell, 46: 491–502. 10.1016/0092-8674(86)90874-3 CASPubMedWeb of Science®Google Scholar Knowles, R. G., Merrett, M., Salter, M., and Moncada, S. (1990) Differential induction of brain, lung and liver nitric oxide synthase by endotoxin in the rat. Biochem. J., 270: 833–836. 10.1042/bj2700833 CASPubMedWeb of Science®Google Scholar Leszczynski, D., Joenvaara, S., and Foegh, M. L. (1996) Protein kinase C-alpha regulates proliferation but not apoptosis in rat coronary vascular smooth muscle cells. Life Sci., 58: 599–606. 10.1016/0024-3205(95)02329-1 CASPubMedWeb of Science®Google Scholar Li, S., Fan, S. X., and McKenna, T. M. (1996) Role of nitric oxide in sepsis-induced hyporeactivity in isolated rat lungs. Shock, 5: 122–129. 10.1097/00024382-199602000-00007 CASPubMedWeb of Science®Google Scholar Li, S., Fan, S. X., and McKenna, T. M. (1997) Vascular smooth muscle cells on Matrigel as a model for LPS-induced hypocontractility and NO formation. Am. J. Physiol., 272: H576–H584. CASPubMedWeb of Science®Google Scholar Low, B. C. and Grigor, M. R. (1995) Angiotensin II stimulates system y+ and cationic amino acid transporter gene expression in cultured vascular smooth muscle cells. J. Biol. Chem., 270: 27577–27583. 10.1074/jbc.270.46.27577 CASPubMedWeb of Science®Google Scholar Maier, J. A., and Ragnotti, G. (1993) An oligomer targeted against protein kinase C alpha prevents interleukin-1 alpha induction of cyclooxygenase expression in human endothelial cells. Exp. Cell Res., 205: 52–58. 10.1006/excr.1993.1057 CASPubMedWeb of Science®Google Scholar Marletta, M. A. (1993) Nitric oxide synthase structure and mechanism. J. Biol. Chem., 268: 12231–12234. CASPubMedWeb of Science®Google Scholar Martiny Baron, G., Kazanietz, M. G., Mischak, H., Blumberg, P. M., Kochs, G., Hug, H., Marme, D., and Schachtele, C. (1993) Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. J. Biol. Chem., 268: 9194–9197. CASPubMedWeb of Science®Google Scholar McKenna, T. M., Clegg, J. M., and Williams, T. J. (1994) Protein kinase C is a mediator of lipopolysaccharide-induced vascular suppression in the rat aorta. Shock, 2: 84–89. 10.1097/00024382-199408000-00002 CASPubMedWeb of Science®Google Scholar McKenna, T. M., Li, S., and Tao, S. (1995) PKC mediates LPS- and phorbol-induced cardiac cell nitric oxide synthase activity and hypo-contractility. Am. J. Physiol., 269: H1891–H1898. CASPubMedWeb of Science®Google Scholar McKenna, T. M., Fan, S. X., and Li, S. (1997) Lipopolysaccharide-re-sponsive protein kinase C isotypes in the adult rat aorta. Shock, 7: 269–273. 10.1097/00024382-199704000-00005 CASPubMedWeb of Science®Google Scholar Moncada, S., and Higgs, E. A. (1991) Endogenous nitric oxide: Physiology, pathology and clinical relevance. Eur. J. Clin. Invest., 21: 361–374. 10.1111/j.1365-2362.1991.tb01383.x CASPubMedWeb of Science®Google Scholar Mukherjee, J. J., Chung, T., Ways, D. K., and Kiss, Z. (1996) Protein kinase C alpha is a major mediator of the stimulatory effect of phorbol ester on phospholipase D-mediated hydrolysis of phosphati-dylethanolamine. J. Biol. Chem., 46: 28912–28917. Google Scholar Nakanishi, H., Brewer, K. A., and Exton, J. H. (1993) Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem., 268: 13–16. CASPubMedWeb of Science®Google Scholar Newton, A. C. (1995) Protein kinase C: Structure, function, and regulation. J. Biol. Chem., 270: 28495–28498. 10.1074/jbc.270.48.28495 CASPubMedWeb of Science®Google Scholar Ohanian, V., Ohanian, J., Shaw, L., Scarth, S., Parker, P. J., and Heag-erty, A. M. (1996) Identification of protein kinase C isoforms in rat mesenteric small arteries and their possible role in agonist-induced contraction. Circ. Res., 78: 806–812. 10.1161/01.RES.78.5.806 CASPubMedWeb of Science®Google Scholar Pan, J., Burgher, K. L., Szcepanik, A. M., and Ringheim, G. E. (1996a) Tyrosine phosphorylation of inducible nitric oxide synthase: Implications for potential post-translational regulation. Biochem. J., 314: 889–894. 10.1042/bj3140889 CASPubMedWeb of Science®Google Scholar Pan, M., Wasa, M., Ryan, U., and Souba, W. (1996b) Lipopolysaccha-ride and tumor necrosis factor stimulate lung microvascular argi-nine uptake, a response attenuated by dexamethasone. JPEN J. Parenter. Enteral Nutr., 20: 50–55. 10.1177/014860719602000150 CASPubMedWeb of Science®Google Scholar Paul, A., Pendreigh, R. H., and Plevin, R. (1995) Protein kinase C and tyrosine kinase pathways regulate lipopolysaccharide-induced nitric oxide synthase activity in RAW 264.7 murine macrophages. Br. J. Pharmacol., 114: 482–488. 10.1111/j.1476-5381.1995.tb13252.x CASPubMedWeb of Science®Google Scholar Scott, J. A., Machoun, M., and McCormack D. G. (1996) Inducible nitric oxide synthase and vascular reactivity in rat thoracic aorta: Effect of aminoguanidine. J. Appl. Physiol., 80: 271–277. CASPubMedWeb of Science®Google Scholar Tremblay, P., Houde, M., Arbour, N., Rochefort, D., Masure, S., Man-deville, R., Opdenakker, G., and Oth, D. (1995) Differential effects of PKC inhibitors on gelatinase B and interleukin 6 production in the mouse macrophage. Cytokine, 7: 130–136. 10.1006/cyto.1995.1017 CASPubMedWeb of Science®Google Scholar Vallance, P., Palmer, R. M., and Moncada, S. (1992) The role of induction of nitric oxide synthesis in the altered responses of jugular veins from endotoxaemic rabbits. Br. J. Pharmacol., 106: 459–463. 10.1111/j.1476-5381.1992.tb14356.x CASPubMedWeb of Science®Google Scholar Werner Felmayer, G., Prast, H., Werner, E. R., Philippu, A., and Wachter, H. (1993) Induction of GTP cyclohydrolase I by bacterial lipopolysaccharide in the rat. FEBS Lett., 322: 223–226. 10.1016/0014-5793(93)81574-J CASPubMedWeb of Science®Google Scholar Wileman, S. M., Mann, G. E., and Baydoun, A. R. (1995) Induction of l-arginine transport and nitric oxide synthase in vascular smooth muscle cells: Synergistic actions of pro-inflammatory cytokines and bacterial lipopolysaccharide. Br. J. Pharmacol., 116: 3243–3250. 10.1111/j.1476-5381.1995.tb15131.x CASPubMedWeb of Science®Google Scholar Citing Literature Volume176, Issue2August 1998Pages 402-411 ReferencesRelatedInformation

Referência(s)