Artigo Revisado por pares

On Error Bounds for Gaussian Cubature

1962; Society for Industrial and Applied Mathematics; Volume: 4; Issue: 1 Linguagem: Inglês

10.1137/1004004

ISSN

1095-7200

Autores

A. C. Ahlin,

Tópico(s)

Mathematical Approximation and Integration

Resumo

Previous article Next article On Error Bounds for Gaussian CubatureA. C. AhlinA. C. Ahlinhttps://doi.org/10.1137/1004004PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] A. C. Aitken and , G. L. Frewin, The Numerical Evaluation of Double Integrals, Proc. Edinburgh Math. Soc., 42 (1923), CrossrefGoogle Scholar[2] P. Appel, Sur Une Clusse de Polynomes à Deux Variables et le Calcul Approchedes Integrales Doubles, Annales de la Faculté des Sciences de Toulouse, 4 (1890), H.1–H.20 Google Scholar[3] W. Burnside, An Approximate Quadrature Formula, Messenger of Math., 37 (1908), 166–167 Google Scholar[4] P. C. Hammer, , O. J. Marlowe and , A. H. Stroud, Numerical integration over simplexes and cones, Math. Tables Aids Comput., 10 (1956), 130–137 MR0086389 0070.35404 CrossrefGoogle Scholar[5] Preston C. Hammer and , Arthur H. Stroud, Numerical integration over simplexes, Math. Tables Aids Comput., 10 (1956), 137–139 MR0086390 0070.35405 CrossrefGoogle Scholar[6] Preston C. Hammer and , A. Wayne Wymore, Numerical evaluation of multiple integrals. I, Math. Tables Aids Comput., 11 (1957), 59–67 MR0087220 0079.13905 CrossrefGoogle Scholar[7] F. B. Hildebrand, Introduction to numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956x+511 MR0075670 0070.12401 Google Scholar[8] J. O. Irwin, On Quadrature and Cubature, Tracts for Computers, X, Cambridge University Press, London, 1923 Google Scholar[9] Kaiser S. Kunz, Numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1957xv+381 MR0088045 0079.33601 Google Scholar[10] J. C. Maxwell, On Approximate Multiple Integration Between Limits of Summation, Cambridge Phil. Soc., Proc., 3 (1877), 39–47 Google Scholar[11] Richard von Mises, Numerische Berechnung mehrdimensionaler Integrale, Z. Angew. Math. Mech., 34 (1954), 201–210 MR0063777 0056.28501 CrossrefGoogle Scholar[12] William H. Peirce, Numerical integration over the planar annulus, J. Soc. Indust. Appl. Math., 5 (1957), 66–73, No. 2 10.1137/0105006 MR0090122 0079.34101 LinkISIGoogle Scholar[13] William H. Peirce, Numerical integration over the spherical shell, Math. Tables Aids Comput, 11 (1957), 244–249 MR0093910 0084.34905 CrossrefGoogle Scholar[14] Johann Radon, Zur mechanischen Kubatur, Monatsh. Math., 52 (1948), 286–300 10.1007/BF01525334 MR0033206 0031.31504 CrossrefGoogle Scholar[15] Michael Sadowsky, A formula for approxiamte computation of a triple integral, Amer. Math. Monthly, 47 (1940), 539–543 MR0002496 0025.06702 CrossrefGoogle Scholar[16] Arthur Sard, Remainders as integrals of partial derivatives, Proc. Amer. Math. Soc., 3 (1952), 732–741 MR0050645 0048.30003 CrossrefISIGoogle Scholar[17] James B. Scarborough, Numerical Mathematical Analysis, The Johns Hopkins Press, Baltimore, Md., 1950xviii+511, 2d ed. MR0039361 0040.21302 Google Scholar[18] J. F. Steffensen, Interpolation, Chelsea Publishing Co., New York, N. Y., 1950ix+248, 2d ed. MR0036799 0041.02603 Google Scholar[19] G. W. Tyler, Numerical integration of functions of several variables, Canadian J. Math., 5 (1953), 393–412 MR0056379 0052.13003 CrossrefISIGoogle Scholar[20] J. L. Walsh, Interpolation and Approximation, Vol. 20, American Math. Soc. Colloquium Publs., 1935 0013.05903 Google Scholar[21] Fr. A. Willers, Practical Analysis. Graphical and Numerical Methods, Dover Publications Inc., New York, 1948x+422 MR0028094 0032.07901 Google Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Stable Numerical Solutions Preserving Qualitative Properties of Nonlocal Biological Dynamic ProblemsAbstract and Applied Analysis, Vol. 2019 | 1 Jul 2019 Cross Ref Gaussian cubature: A practitioner’s guideMathematical and Computer Modelling, Vol. 45, No. 7-8 | 1 Apr 2007 Cross Ref Some advancements in Monte Carlo integration methods with applications to proximity fuze detection probabilitiesComputers & Industrial Engineering, Vol. 22, No. 3 | 1 Jul 1992 Cross Ref Continuous time collocation methods for Volterra-Fredholm integral equationsNumerische Mathematik, Vol. 56, No. 5 | 1 May 1989 Cross Ref Cubature error bounds for analytic functionsMathematics of Computation, Vol. 27, No. 123 | 1 January 1973 Cross Ref An Error Representation for Product Cubature RulesSIAM Journal on Numerical Analysis, Vol. 7, No. 3 | 14 July 2006AbstractPDF (144 KB)Konvergenz mehrdimensionaler InterpolationNumerische Mathematik, Vol. 15, No. 2 | 1 Jun 1970 Cross Ref Mehrdimensionale Hermite-InterpolationIterationsverfahren Numerische Mathematik Approximationstheorie | 1 Jan 1970 Cross Ref Cross-product cubature error boundsMathematics of Computation, Vol. 24, No. 111 | 1 January 1970 Cross Ref The Convergence of Complex CubaturesSIAM Journal on Numerical Analysis, Vol. 6, No. 1 | 14 July 2006AbstractPDF (720 KB)Tensorprodukte und mehrdimensionale InterpolationMathematische Zeitschrift, Vol. 113, No. 1 | 1 Jan 1969 Cross Ref On the Estimation of Errors of Gaussian Cubature FormulasSIAM Journal on Numerical Analysis, Vol. 5, No. 1 | 14 July 2006AbstractPDF (733 KB)Error bounds for the evaluation of integrals by repeated gauss-type formulaeNumerische Mathematik, Vol. 9, No. 3 | 1 Dec 1966 Cross Ref A bivariate generalization of Hermite’s interpolation formulaMathematics of Computation, Vol. 18, No. 86 | 1 January 1964 Cross Ref Volume 4, Issue 1| 1962SIAM Review1-78 History Submitted:28 June 1961Published online:18 July 2006 InformationCopyright © 1962 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1004004Article page range:pp. 25-39ISSN (print):0036-1445ISSN (online):1095-7200Publisher:Society for Industrial and Applied Mathematics

Referência(s)
Altmetric
PlumX