Congestive Heart Failure: Biochemical and Physiological Considerations: Combined Clinical Staff Conference at the National Institutes of Health
1966; American College of Physicians; Volume: 64; Issue: 4 Linguagem: Inglês
10.7326/0003-4819-64-4-904
ISSN1539-3704
Autores Tópico(s)Heart Failure Treatment and Management
ResumoClinical Staff Conference1 April 1966Congestive Heart FailureCombined Clinical Staff Conference at the National Institutes of HealthEUGENE BRAUNWALD, M.D., F.A.C.P., CHARLES A. CHIDSEY, M.D., PETER E. POOL, M.D., EDMUND H. SONNENBLICK, M.D., JOHN ROSS JR., M.D., DEAN T. MASON, M.D., JAMES F. SPANN, M.D., JAMES W. COVELL, M.D.EUGENE BRAUNWALD, M.D., F.A.C.P., CHARLES A. CHIDSEY, M.D., PETER E. POOL, M.D., EDMUND H. SONNENBLICK, M.D., JOHN ROSS JR., M.D., DEAN T. MASON, M.D., JAMES F. SPANN, M.D., JAMES W. COVELL, M.D.Author, Article, and Disclosure Informationhttps://doi.org/10.7326/0003-4819-64-4-904 SectionsAboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinkedInRedditEmail ExcerptDr. Eugene Braun Wald: Congestive heart failure, the subject of today's conference, is the disease state in which an abnormality of myocardial function is responsible for the heart's failure to pump blood at a rate commensurate with the body's requirements. Heart failure occurs so frequently that physicians are, in general, quite familiar with its clinical manifestations and methods of treatment. However, there is lack of agreement concerning the fundamental derangement responsible for this common disease state. Efforts to gain an understanding of the mechanisms responsible for the functional changes occurring in heart failure have constituted one of the objectives of...References1. OLSON RE: Physiology of cardiac muscle, in Handbook of Physiology, Section 2: Circulation Vol. I., edited by HAMILTON, W. F., DOW, P. American Physiological Society. Washington, D. C., 1962, p. 199. Google Scholar2. OLSON RE: Abnormalities of myocardial metabolism. Circ. Res. 15 (supplement 2): 109, 1964. Google Scholar3. BING RJ: Metabolism of the heart. Harvey Lect. 1954-55, Ser. 50: 27, 1956. Google Scholar4. CAINDAVIES DFRE: Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem. Biophys. Res. Commun. 8: 361, 1962. CrossrefMedlineGoogle Scholar5. BUFFACARAFOLIMUSCATELLO PEU: Mitochondrial biochemical lesion and pyrogenic effect of pentachlorophenol. Biochem. Pharmacol. 12: 769, 1963. CrossrefMedlineGoogle Scholar6. SLATER EC: Uncouplers and inhibitors of oxidative phosphorylation, in Metabolic Inhibitors, vol. II, edited by HOCHSTER, R. M., QUASTEL, J. H. Academic Press, New York, 1963, p. 503. CrossrefGoogle Scholar7. LUFTIKKOSPALMIERIERNSTERAFZELIUS RDGLB: A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J. Clin. Invest. 41: 1776, 1962. CrossrefMedlineGoogle Scholar8. SCHWARTZLEE AKS: Study of heart mitochondria and glycolytic metabolism in experimentally induced cardiac failure. Circ. Res. 10: 321, 1962. CrossrefMedlineGoogle Scholar9. FEINSTEIN MB: Effects of experimental congestive heart failure, ouabain and asphyxia on the high-energy phosphate and creatine content of the guinea pig heart. Ibid., p. 333. Google Scholar10. ARGUSARCOSSARDESAIOVERBY MFJCVMJL: Oxidative rates and phosphorylation in sarcosomes from experimentally induced failing rat heart. Proc. Soc. Exp. Biol. Med. 117: 380, 1964. CrossrefMedlineGoogle Scholar11. MEERSONZALETAYEVALAGUTCHEVPSHENNIKOVA FZTASSMG: Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart. Exp. Cell Res. 36: 568, 1964. CrossrefMedlineGoogle Scholar12. FOXWIKLERREED ACNWGE: High energy phosphate compounds in the myocardium during experimental congestive heart failure. Purine and pyrimidine nucleotides, creatine, and creatine phosphate in normal and in failing hearts. J. Clin. Invest. 44: 202, 1965. CrossrefMedlineGoogle Scholar13. CHIDSEYWEINBACHPOOLMORROW CAECPEAG: Biochemical studies of energy metabolism in the failing human heart. J. Clin. Invest. 45: 40, 1966. CrossrefMedlineGoogle Scholar14. ENGLEHARDTLJUBIMOVA WAMN: Myosine and adenosinetriphosphatase. Nature (London) 144: 668, 1939. CrossrefGoogle Scholar15. CAININFANTEDAVIES DFAARE: Chemistry of muscle contraction. Adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature (London) 196: 214, 1962. CrossrefMedlineGoogle Scholar16. WOLLENBERGER A: Metabolic action of the cardiac glycosides. II. Effect of ouabain and digoxin on the energy-rich phosphate content of the heart. J. Pharmacol. Exp. Ther. 103: 123, 1951. MedlineGoogle Scholar17. FURCHGOTTDE GUBAREFF RFT: The high energy phosphate content of cardiac muscle under various experimental conditions which alter contractile strength. J. Pharmacol. Exp. Ther. 124: 203, 1958. MedlineGoogle Scholar18. FLECKENSTEINJANKEGERLACH AJE: Konzentration und Turnover der energiereichen Phosphate des Herzens nach Studien mit Papierchromatographic und Radiophosphor. Klin. Wschr. 37: 451, 1959. CrossrefMedlineGoogle Scholar19. POOLCOVELLCHIDSEYBRAUNWALD PEJWCAE: Myocardial high energy phosphate stores in acutely induced, hypoxic heart failure (abstract). Clin. Res. 13: 528, 1965. Google Scholar20. COWAN DW: The creatine content of the myocardium of normal and abnormal human hearts. Amer. Heart J. 9: 378, 1934. CrossrefGoogle Scholar21. OLSONELLENBOGENIYENGAR REER: Cardiac myosin and congestive heart failure in the dog. Circulation 24: 471, 1961. CrossrefMedlineGoogle Scholar22. DAVISCARROLLTRAPASSOYANKOPOULOS JOWRMNA: Chemical characterization of cardiac myosin from normal dogs and from dogs with chronic congestive heart failure. J. Clin. Invest. 39: 1463, 1960. CrossrefMedlineGoogle Scholar23. MUELLERFRANZENRICEOLSON HJRVRE: Characterization of cardiac myosin from the dog. J. Biol. Chem. 239: 1447, 1964. CrossrefMedlineGoogle Scholar24. STENGERSPIRO RJD: Ultrastructure of mammalian cardiac muscle. J. Biophys. Biochem. Cytol. 9: 325, 1961. CrossrefMedlineGoogle Scholar25. HUXLEY HE: Muscle cells, in The Cell IV, edited by BRACKET, J., MIRSKY, A. E. Academic Press, New York, 1960, p. 365. Google Scholar26. SPIROSONNENBLICK DEH: Comparison of the ultrastructural basis of the contractile process in heart and skeletal muscle. Circ. Res. 14 (supplement 2): 14, 1964. Google Scholar27. HUXLEYHANSON HEJ: Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature (London) 173: 973, 1954. CrossrefMedlineGoogle Scholar28. HUXLEYNIEDERGERKE AFR: Structural changes in muscle during contraction. Interference microscopy of living muscle fibers. Ibid., p. 971. Google Scholar29. PAGEHUXLEY SGHE: Filament lengths in striated muscle. J. Cell Biol. 19: 369, 1963. CrossrefMedlineGoogle Scholar30. SONNENBLICKSPIROCOTTRELL EHDTS: Fine structural changes in heart muscle in relation to the length-tension curve. Proc. Nat. Acad. Sci. USA 49: 193, 1963. CrossrefMedlineGoogle Scholar31. SPOTNITZSONNENBLICKSPIRO HEHD: Relation of ultrastructure to function in the intact heart. Sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ. Res. 18: 49, 1965. CrossrefGoogle Scholar32. BRAUNWALD E: The control of ventricular function in man. Brit. Heart J. 27: 1, 1965. CrossrefMedlineGoogle Scholar33. BRAUNWALDROSS EJ: Applicability of Starling's law of the heart to man. Circ. Res. 15 (supplement 2): 169, 1964. Google Scholar34. BRAUNWALDROSS EJ: Editorial—The ventricular end-diastolic pressure. An appraisal of its value in the recognition of ventricular failure in man. Amer. J. Med. 34: 147, 1963. CrossrefMedlineGoogle Scholar35. PATTERSONSTARLING SWEH: On the mechanical factors which determine the output of the ventricles. J. Physiol. 48: 357, 1914. CrossrefMedlineGoogle Scholar36. HILL AV: The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. Med. 126: 136, 1938. Google Scholar37. ABBOTTMOMMAERTS BCWF: A study of inotropic mechanisms in the papillary muscle preparation. J. Gen. Physiol. 42: 533, 1959. CrossrefMedlineGoogle Scholar38. SONNENBLICK EH: Force-velocity relations in mammalian heart muscle. Amer. J. Physiol. 202: 931, 1962. CrossrefMedlineGoogle Scholar39. ROSSCOVELLSONNENBLICKBRAUNWALD JJWEHE: Contractile state of the heart characterized by force-velocity relations in variably afterloaded and isovolumic beats. Circ. Res. 18: 149, 1966. CrossrefGoogle Scholar40. PODOLSKY RJ: The chemical thermodynamics and molecular mechanism of muscle contraction. Ann. N. Y. Acad. Sci. 72: 522, 1959. CrossrefMedlineGoogle Scholar41. ROSSCOVELLSONNENBLICKBRAUNWALD JJWEHE: Force-velocity relations in acute heart failure. Physiologist 8: 263, 1965. Google Scholar42. FOLSEBRAUNWALD RE: Determination of fraction of left ventricular volume ejected per beat and of ventricular end-diastolic and residual volumes. Experimental and clinical observations with a precordial dilution technic. Circulation 25: 674, 1962. CrossrefMedlineGoogle Scholar43. MILLERKIRKLINSWAN GAJWHJ: Myocardial function and left ventricular volumes in acquired valvular insufficiency. Circulation 31: 374, 1965. CrossrefMedlineGoogle Scholar44. FRYEBRAUNWALD RLE: Studies on Starlling's law of the heart. I. The circulatory response to acute hypervolemia and its modification by ganglionic blockade. J. Clin. Invest. 39: 1043, 1960. CrossrefMedlineGoogle Scholar45. ROSSBRAUNWALD JE: Studies on Starling's law of the heart. IX. The effects of impeding venous return on performance of the normal and failing human left ventricle. Circulation 30: 719, 1964. CrossrefMedlineGoogle Scholar46. ROSSBRAUNWALD JE: The study of left ventricular function in man by increasing resistance to ventricular ejection with angiotensin. Circulation 29: 739, 1964. CrossrefMedlineGoogle Scholar47. SONNENBLICKBRAUNWALDWILLIAMSGLICK EHEJFG: Effects of exercise on myocardial force-velocity relations in intact unanesthetized man: relative roles of changes in heart rate, sympathetic activity and ventricular dimensions. J. Clin. Invest. 44: 2051, 1965. CrossrefMedlineGoogle Scholar48. ROSSGAULTMASONLINHARTBRAUNWALD JJHDTJWE: Left ventricular performance during muscular exercise in patients with and without cardiac dysfunction. Circulation. In press. Google Scholar49. GLEASONBRAUNWALD WLE: Studies on the first derivative of the ventricular pressure pulse in man. J. Clin. Invest. 41: 80, 1962. CrossrefMedlineGoogle Scholar50. LEVINENEILLWAGMANKRASNOWGORLIN HJWARJNR: The effect of exercise on mean left ventricular ejection rate in man. Ibid., p. 1050. Google Scholar51. GORLINROLETTYURCHAKELLIOT RELPMWC: Left ventricular volume in man measured by thermodilution. J. Clin. Invest. 43: 1203, 1964. CrossrefMedlineGoogle Scholar52. DONALDBISHOPWADE KWJMOL: Changes in the oxygen content of axillary venous blood during leg exercise in patients with rheumatic heart disease. Clin. Sci. 14: 531, 1955. MedlineGoogle Scholar53. WADEBISHOP OLJM: Cardiac Output and Regional Blood Flow. 268 pages. F. A. Davis Co., Philadelphia, 1962. Google Scholar54. MUTHWORMALDBISHOPDONALD HAPNJMKW: Further studies of blood flow in the resting arm during supine leg exercise. Clin. Sci. 17: 603, 1958. MedlineGoogle Scholar55. MASONBRAUNWALD DTE: Studies on digitalis. X. Effects of ouabain on forearm vascular resistance and venous tone in normal subjects and in patients in heart failure. J. Clin. Invest. 43: 532, 1964. CrossrefMedlineGoogle Scholar56. SHEPHERD JT: Physiology of the Circulation in Human Limbs in Health and Disease. 416 pages. W. B. Saunders Co., Philadelphia, 1963. Google Scholar57. REMENSNYDERMITCHELLSARNOFF JPJHSJ: Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ. Res. 11: 370, 1962. CrossrefMedlineGoogle Scholar58. WOODLITTERWILKINS JETRW: Peripheral venoconstriction in human congestive heart failure. Circulation 13: 524, 1956. CrossrefMedlineGoogle Scholar59. BURCH GE: Evidence for increased venous tone in chronic congestive heart failure. Arch. Intern. Med. (Chicago) 98: 750, 1956. CrossrefGoogle Scholar60. WOOD JE: The mechanism of the increased venous pressure with exercise in congestive heart failure. J. Clin. Invest. 41: 2020, 1962. CrossrefMedlineGoogle Scholar61. SHARPEY-SCHAFER EP: Venous tone. Brit. Med. J. 2: 1589, 1961. CrossrefMedlineGoogle Scholar62. STARLING EH: Points on pathology of heart disease. Lancet 1: 569, 1897. CrossrefGoogle Scholar63. CHIDSEYHARRISONBRAUNWALD CADCE: Augmentation of the plasma norepinephrine response to exercise in patients with congestive heart failure. New Eng. J. Med. 267: 650, 1962. CrossrefMedlineGoogle Scholar64. CHIDSEYBRAUNWALDMORROW CAEAG: Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Amer. J. Med. 39: 442, 1965. CrossrefMedlineGoogle Scholar65. CHIDSEYBRAUNWALDMORROWMASON CAEAGDT: Myocardial norepinephrine concentration in man. Effects of reserpine and of congestive heart failure. New Eng. J. Med. 269: 653, 1963. CrossrefMedlineGoogle Scholar66. CHIDSEYSONNENBLICKMORROWBRAUNWALD CAEHAGE: Norepinephrine stores and contractile force of papillary muscle from the failing human heart. Circulation 33: 43, 1966. CrossrefMedlineGoogle Scholar67. CHIDSEYKAISERSONNENBLICKSPANNBRAUNWALD CAGAEHJFE: Cardiac norepinephrine stores in experimental heart failure in the dog. J. Clin. Invest. 43: 2386, 1964. CrossrefMedlineGoogle Scholar68. SPANNCHIDSEYBRAUNWALD JFCAE: Reduction of cardiac stores of norepinephrine in experimental heart failure. Science 145: 1439, 1964. CrossrefMedlineGoogle Scholar69. SPANNCHIDSEYPOOLBRAUNWALD JFCAPEE: Mechanism of norepinephrine depletion in experimental heart failure produced by aortic constriction in the guinea pig. Circ. Res. 17: 312, 1965. CrossrefMedlineGoogle Scholar70. CHIDSEYBRAUNWALD CAE: Sympathetic activity and neurotransmitter depletion in congestive heart failure. Pharmacol. Rev. In press. Google Scholar71. SPANNSONNENBLICKCOOPERCHIDSEYWILLMANBRAUNWALD JFEHTCAVLE: Role of norepinephrine stores in determining the contractile state of myocardium and its responsiveness to glycosides and norepinephrine. Circulation 32 (supplemen 2): 201, 1965. Google Scholar72. COVELLCHIDSEYBRAUNWALD JWCAE: Reduction of the cardiac response to postganglionic sympathetic nerve stimulation in experimental heart failure. Circ. Res. In press. Google Scholar7 BRAUNWALDPLAUTHMORROW EWHAG: A method for the detection and quantification of impaired sodium excretion. Results of an oral sodium tolerance test in normal subjects and in patients with heart disease. Circulation 32: 223, 1965. CrossrefMedlineGoogle Scholar74. SONNENBLICKFROMMERBRAUNWALD EHPLE: Electroaugmentation of human and cat papillary muscle produced by paired electrical stimulation. Bull. N. Y. Acad. Med. 41: 554, 1965. MedlineGoogle Scholar75. KOCH-WESERBLINKS JJR: The influence of the interval between beats on myocardial contractility. Pharmacol. Rev. 15: 601, 1963. MedlineGoogle Scholar76. ROSSSONNENBLICKKAISERFROMMERBRAUNWALD JEHGAPLE: Electroaugmentation of ventricular performance and oxygen consumption by repetitive application of paired electrical stimuli. Circ. Res. 16: 332, 1965. CrossrefMedlineGoogle Scholar77. HOFFMANBARTELSTONESCHERLAGCRANEFIELD BFHJBJPF: Effects of post-extrasystolic potentiation on normal and failing hearts. Bull. N. Y. Acad. Med. 41: 498, 1965. MedlineGoogle Scholar78. BRAUNWALDROSSFROMMERWILLIAMSSONNENBLICKGAULT EJPLJFEHJH: Clinical observations on paired electrical stimulation of the heart. Amer. J. Med. 37: 700, 1964. CrossrefMedlineGoogle Scholar79. BRAUNWALDSONNENBLICKROSSFROMMER EEHJPL: Editorial—Paired electrical stimulation of the heart: a physiologic riddle and a clinical challenge. Circulation 32: 677, 1965. CrossrefMedlineGoogle Scholar This content is PDF only. To continue reading please click on the PDF icon. Author, Article, and Disclosure InformationAuthors: EUGENE BRAUNWALD, M.D., F.A.C.P.; CHARLES A. CHIDSEY, M.D.; PETER E. POOL, M.D.; EDMUND H. SONNENBLICK, M.D.; JOHN ROSSJR., M.D.; DEAN T. MASON, M.D.; JAMES F. SPANN, M.D.; JAMES W. COVELL, M.D.Affiliations: Bethesda, MarylandThis is an edited transcription of a combined clinical staff conference at the Clinical Center, Bethesda, Md., by the National Heart Institute, National Institutes of Health, Public Health Service, U. S. Department of Health, Education, and Welfare.Requests for reprints should be addressed to Eugene Braunwald, M.D., Cardiology Branch, National Heart Institute, Bldg. 10, Room 7-B-15, National Institutes of Health, Bethesda, Md. 20014. PreviousarticleNextarticle Advertisement FiguresReferencesRelatedDetails Metrics Cited byNeurohormonal connections with mitochondria in cardiomyopathy and other diseasesEvaluation of the effects of different treatment modalities on angiogenesis in heart failure patients with preserved ejection fraction via VEGF and sVEGFR-1Substance P Increases Sympathetic Activity During Combined Angiotensin-Converting Enzyme and Dipeptidyl Peptidase-4 InhibitionReply: comments on the interview by William C. Roberts with "Dean Towle Mason, MD: a conversation with the editor"Heart Rate VariabilityInfluence of cardiovascular diseases upon the results of the cardiovascular reflex tests in diabetic and nondiabetic subjectsEffects of digitalis glycosides on the systemic arterial and venous system: clinical importance in the pathophysiology of congestive heart failureDigitalisDeterminants of drug response in severe chronic heart failure. 1. Activation of vasoconstrictor forces during vasodilator therapy.Angiotensin inhibition in severe heart failure: Acute central and limb hemodynamic effects of captopril with observations on sustained oral therapyEffects of Cardiac Glycosides on Vascular SystemRebound Hemodynamic Events after the Abrupt Withdrawal of Nitroprusside in Patients with Severe Chronic Heart FailureAntianginal drugsQuantitative Characterization of Heart Rate During ExerciseReabsorption of sodium in the proximal renal tubule in cirrhosis of the liver.Differences in the regulation of vascular resistance in guinea pigs with right and left heart failure.Cardiocirculatory responses to muscular exercise in congestive heart failureEvidence for Improved Cardiac Performance after Beta-Blockade in Patients with Coronary Artery DiseaseInfluence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man.Electrophysiologic and Electrocardiographic Consequences of Congestive Heart FailureNiere und HerzinsuffizienzDer Einfluß cardio-chirurgischer Maßnahmen am rheumatisch veränderten Herzklappenapparat auf die Leistungsfähigkeit des artiellen Systems der SkelettmuskulaturChapter 8. Antiarrhythmic and Antianginal AgentsDefective Cardiac Parasympathetic Control in Patients with Heart DiseaseCardiac Failure in AdultsAlterations of hemodynamics and myocardial mechanics in patients with congestive heart failure: Pathophysiologic mechanisms and assessment of cardiac function and ventricular contractilityIntractable Heart Failure and Its ManagementThe valsalva maneuver as a clinical test for circulatory congestion in chronic uremiaReport of the Panels on Cardiovascular Drugs from the Drug Efficacy StudyPhysiologic Approach to the Treatment of Angina PectorisAugmented Sympathetic Neurotransmitter Activity in the Peripheral Vascular Bed of Patients with Congestive Heart Failure and Cardiac Norepinephrine DepletionEndocrine factors in congestive heart failureMechanisms of Contraction of the Normal and Failing HeartPhysical signs in congestive heart failureHemodynamic Alterations in Congestive Heart Failure 1 April 1966Volume 64, Issue 4Page: 904-941KeywordsAttentionBloodElectron microscopyExcretionHeart diseasesHeart failureIschemiaMedical servicesPrevention, policy, and public health ePublished: 1 December 2008 Issue Published: 1 April 1966 PDF downloadLoading ...
Referência(s)