Artigo Acesso aberto Revisado por pares

Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors

2015; Cell Press; Volume: 160; Issue: 3 Linguagem: Inglês

10.1016/j.cell.2014.12.026

ISSN

1097-4172

Autores

Joshua H. Jennings, Randall L. Ung, Shanna L. Resendez, Alice M. Stamatakis, Johnathon G. Taylor, Jonathan Huang, Katie Veleta, Pranish A. Kantak, Megumi Aita, Kelson Shilling-Scrivo, Charu Ramakrishnan, Karl Deisseroth, Stephani Otte, Garret D. Stuber,

Tópico(s)

Memory and Neural Mechanisms

Resumo

Optimally orchestrating complex behavioral states, such as the pursuit and consumption of food, is critical for an organism’s survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here, we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, whereas genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH), and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level.

Referência(s)