Revisão Revisado por pares

New Approaches in the Study of Stimulus‐Secretion Coupling in Anterior Pituitary Cells

1994; Wiley; Volume: 710; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1994.tb26637.x

ISSN

1749-6632

Autores

Pierre‐Marie Lledo, Philippe Vernier, Jean‐Didier Vincent, William T. Mason, Robert Zorec,

Tópico(s)

Growth Hormone and Insulin-like Growth Factors

Resumo

Annals of the New York Academy of SciencesVolume 710, Issue 1 p. 301-318 New Approaches in the Study of Stimulus-Secretion Coupling in Anterior Pituitary Cells PIERRE-MARIE LLEDO, PIERRE-MARIE LLEDO Institut Alfred Fessard Centre National de la Recherche Scientifique 91198 Gif-sur-Yvette Cédex, FranceSearch for more papers by this authorPHILIPPE VERNIER, PHILIPPE VERNIER Institut Alfred Fessard Centre National de la Recherche Scientifique 91198 Gif-sur-Yvette Cédex, FranceSearch for more papers by this authorJEAN-DIDIER VINCENT, JEAN-DIDIER VINCENT Institut Alfred Fessard Centre National de la Recherche Scientifique 91198 Gif-sur-Yvette Cédex, FranceSearch for more papers by this authorWILLIAM T. MASON, WILLIAM T. MASON Department of Neurobiology Agriculture Food Research Council Babraham Cambridge CB2 4AT, United KingdomSearch for more papers by this authorROBERT ZOREC, ROBERT ZOREC Laboratory of Neuroendocrinology Institute of Pathophysiology University of Ljubljana School of Medicine 61105 Ljubljana, SloveniaSearch for more papers by this author PIERRE-MARIE LLEDO, PIERRE-MARIE LLEDO Institut Alfred Fessard Centre National de la Recherche Scientifique 91198 Gif-sur-Yvette Cédex, FranceSearch for more papers by this authorPHILIPPE VERNIER, PHILIPPE VERNIER Institut Alfred Fessard Centre National de la Recherche Scientifique 91198 Gif-sur-Yvette Cédex, FranceSearch for more papers by this authorJEAN-DIDIER VINCENT, JEAN-DIDIER VINCENT Institut Alfred Fessard Centre National de la Recherche Scientifique 91198 Gif-sur-Yvette Cédex, FranceSearch for more papers by this authorWILLIAM T. MASON, WILLIAM T. MASON Department of Neurobiology Agriculture Food Research Council Babraham Cambridge CB2 4AT, United KingdomSearch for more papers by this authorROBERT ZOREC, ROBERT ZOREC Laboratory of Neuroendocrinology Institute of Pathophysiology University of Ljubljana School of Medicine 61105 Ljubljana, SloveniaSearch for more papers by this author First published: March 1994 https://doi.org/10.1111/j.1749-6632.1994.tb26637.xCitations: 6AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Marty, A. &E. Neher. 1983. Tight seal whole-cell recording. In Single-Channel Recording. B. Sakman & E. Neher, Eds.: 107–121. Plenum. New York . 2 Kelly, R. B. 1993. Storage and release of neurotransmitters. Cell/Neuron (Suppl.) 72: 43–53. 3 Douglas, W. W. 1968. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34: 451–474. 4 Jahn, R. &P. De Camilli. 1991. Membrane proteins of synaptic vesicles: markers for neurons and neuroendocrine cells; tools for the study of neurosecretion. In Markers for Neurons and Neuroendocrine Cells: Molecular and Cell Biology, Diagnostic Applications. First edition. M. Gratzl & D. K. Langley, Eds.: 25–92. Verlag-Chemie. Weinheim . 5 Südhof, T. C. &R. Jahn. 1991. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6: 665–677. 6 Somogyi, P., A. J. Hodgson, R. W. DePotter, R. Fischer-Colbrie, M. Schober, H. Winker &I. W. Chubb. 1984. Chromogranin immunoreactivity in the central nervous system: immuno-chemical characterization, distribution, and relationship to catecholamine and enkephalin pathways. Brain Res. Rev. 8: 193–230. 7 M. Gratzl & D. K. Langley, Eds. 1991. Markers for Neurons and Neuroendocrine Cells: Molecular and Cell Biology, Diagnostic Applications. First edition. Verlag-Chemie. Weinheim . 8 Bennett, M. K. &R. H. Scheller. 1993. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. U.S.A. 90: 2559–2563. 9 Fernandez, J. M., F. Bezanilla &R. E. Taylor. 1982. Distribution and kinetics of membrane dielectric polarization. J. Gen. Physiol. 79: 41–67. 10 Lindau, M. &E. Neher. 1988. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Arch. Gen. Physiol. 411: 137–146. 11 Neher, E. &A. Marty. 1982. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. U.S.A. 79: 6712–6716. 12 Zorec, R., F. Henigman, W. T. Mason &M. Kordas. 1991. Electrophysiological study of hormone secretion by single adenohypophyseal cells. Methods Neurosci. 4: 194–210. 13 Taraskevich, P. S. &W. W. Douglas. 1984. Electrical activity in adenohypophyseal cells and effects of hypophyseotropic substances. Fed. Proc. Fed. Am. Soc. Exp. Biol. 43: 2373–2378. 14 Tse, A., F. W. Tse, W. Almers &B. Hille. 1993. Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science 260: 82–84. 15 Sikdar, S. K., R. Zorec &W. T. Mason. 1990. cAMP directly facilitates calcium-induced exocytosis in bovine lactotrophs. FEBS Lett. 273: 150–154. 16 Sikdar, S. K., R. Zorec, D. Brown &W. T. Mason. 1989. Dual effects of G-protein activation on calcium-dependent exocytosis in bovine lactotrophs. FEBS Lett. 253: 88–92. 17 Stevens, C. F. 1993. Quantal release of neurotransmitter and long-term potentiation. Cell/Neuron (Suppl.) 72: 55–64. 18 Floor, E., P. S. Leventhal &S. F. Schaeffer. 1990. Partial purification and characterization of the vacuolar H+ -ATPase of mammalian synaptic vesicles. J. Neurochem. 55: 1663–1670. 19 Tabb, J. S., P. E. Kosh, R. Van Dyke &T. Ueda. 1992. Glutamate transport into synaptic vesicles: roles of membrane potential, pH gradient, and intravesicular pH. J. Biol. Chem. 267: 15412–15418. 20 Bean, B. P. 1989. Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51: 367–384. 21 Carafoli, E. 1987. Intracellular calcium homeostasis. Annu. Rev. Biochem. 56: 395–433. 22 Snutch, P. &P. B. Reiner. 1992. Calcium channels: diversity of form and function. Curr. Opin. Neurobiol. 2: 247–253. 23 Lledo, P-M., V. Homburger, J. Bockaert &J-D. Vincent. 1992. Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 8: 455–463. 24 Beech, D. J., L. Bernheim &B. Hille. 1992. Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron 8: 97–106. 25 Christakos, S., C. Gabrielides &W. B. Rhoten. 1989. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr. Rev. 10: 3–26. 26 Horn, R. &A. Marty. 1988. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92: 145–159. 27 Lledo, P-M., B. Somasundaram, J. Morton, P. Emson &W. T. Mason. 1992. Stable transfection of calbindin-D28K into the GH3 cell line alters Ca2+ currents and intracellular Ca2+ homeostasis. Neuron 9: 943–954. 28 Smith, S. J. &R. S. Zucker. 1980. Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. J. Physiol. 300: 167–196. 29 Baker, P. F. &D. E. Knight. 1978. Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature (London) 276: 620–622. 30 Gomperts, B. D. &J. M. Fernandez. 1985. Technique for membrane permeabilization. Trends Biochem. Sci. 10: 414–417. 31 Peng, Y. Y. &R. S. Zucker. 1993. Release of LHRH is linearly related to the time integral of presynaptic calcium elevation above a threshold level in bullfrog sympathetic ganglia. Neuron 10: 465–473. 32 Neher, E. &R. Zucker. 1993. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10: 21–30. 33 Thomas, P., J. G. Wong &W. Almers. 1993. Millisecond studies of secretion in single rat pituitary cells stimulated by flash photolysis of caged calcium. EMBO J. 12: 303–306. 34 Valencia, A., P. Chardin, A. Wittinghofer &C. Sander. 1991. The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry 30: 4637–4648. 35 Pfeffer, S. R. 1992. GTP-binding proteins in intracellular transport. Trends Cell Biol. 2: 41–46. 36 Bourne, H. R., D. A. Sanders &F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature (London) 348: 125–132. 37 Grand, R. J. &D. Owen. 1991. The biochemistry of ras p21. Biochem. J. 279: 609–631. 38 Bourne, H. R. 1988. Do GTPases direct membrane traffic in secretion Cell 53: 669–671. 39 Salminen, A. &P. J. Novick. 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 47: 527–538. 40 Goud, B., A. Salminen, N. C. Walworth &P. J. Novick. 1988. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53: 753–768. 41 Chavrier, P., J. P. Gorvel, E. Stelzer, K. Simons, J. Gruenberg &M. Zerial. 1991. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature (London) 353: 769–772. 42 Musha, T., M. Kawata &Y. Takai. 1992. The geranylgeranyl moiety, but not the methyl moiety of the smg-25A/rab3A protein is essential for the interaction with membrane and its inhibitory GDP/GTP exchange protein. J. Biol. Chem. 267: 9821–9825. 43 Khosravi-Far, R., G. J. Clark, K. Abe, A. D. Cox, T. McLain, R. J. Lutz, M. Sinenski &C. J. Der. 1992. Ras (CXXX) and rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J. Biol. Chem. 267: 24363–24368. 44 Mizoguchi, A., S. Kim, T. Ueda, A. Kikuchi, H. Yorifuji, N. Hirokawa &Y. Takai. 1990. Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain. J. Biol. Chem. 265: 11872–11879. 45 Darchen, F., A. Zahraoui, F. Hammel, M-P. Monteils, A. Tavitian &D. Scherman. 1990. Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proc. Natl. Acad. Sci. U.S.A. 87: 5692–5696. 46 Matteoli, M., K. Takei, R. Cameron, P. Hurlbut, P. A. Johnston, T. C. Südhof, R. Jahn &P. De Camilli. 1991. Association of Rab3A with synaptic vesicles at late stages of the secretory pathway. J. Cell Biol. 3: 625–633. 47 Fischer von Mollard, G., T. C. Südhof &R. Jahn. 1991. A small GTP-binding protein dissociates from synaptic vesicles during exocytosis. Nature (London) 349: 79–81. 48 Oberhauser, A. F., J. R. Monck, W. E. Balch &M. Fernandez. 1992. Exocytotic fusion is activated by Rab3A peptides. Nature (London) 360: 270–273. 49 Touchot, N., P. Chardin &A. Tavitian. 1987. Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc. Natl. Acad. Sci. U.S.A. 84: 8210–8214. 50 Matsui, Y., A. Kikuchi, J. Kondo, T. Hishida, Y. Teranishi &Y. Takai. 1988. Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. J. Biol. Chem. 263: 11071–11074. 51 Zahraoui, A., N. Touchot, P. Chardin &A. Tavitian. 1988. Complete coding sequences of the ras related rab3 and 4 cDNAs. Nucleic Acids Res. 16: 1204. 52 Vernier, P., F. Darchen &J. Mallet. 1993. Tissular expression and posttranslational modification distinguish rab3A from rab3B in the rat. Manuscript in preparation. 53 Ayala, J., B. Olofsson, A. Tavitian &A. Prochiantz. 1989. Developmental and regional regulation of rab3, a new brain specific ras-like gene. J. Neurosci. Res. 22: 241–246. 54 Moya, K. L., B. Tavitian, A. Zahraoui &A. Tavitian. 1992. Localization of the ras-like rab3A protein in the adult rat brain. Brain Res. 590: 118–127. 55 Stettler, O., F. Nothias, B. Tavitian &P. Vernier. 1993. Differential expression of rab3 genes in the rat brain. Manuscript in preparation. 56 Baldini, G., T. Hohl, H. Y. Lin &H. F. Lodish. 1992. Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proc. Natl. Acad. Sci. U.S.A. 89: 5049–5052. 57 Elferink, L. A., K. Anzai &R. H. Sheller. 1992. Rab 15, a novel low molecular weight GTP-binding protein specifically expressed in the rat brain. J. Biol. Chem. 267: 5768–5775. 58 Milligan, G. 1988. Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine binding proteins. Biochem. J. 255: 204–211. 59 Heikkila, R., G. Schwab, E. Wickstrom, S. L. Loke, D. H. Pluznik, R. Watt &L. M. Neckers. 1987. A c-myc antisense oligonucleotide inhibits entry into S phase, but not progress from G0 to G1. Nature (London) 328: 445–449. 60 Wang, H-Y., D. C. Watkins &C. C. Malbon. 1992. Antisense oligonucleotides to Gs protein α-subunit sequence accelerate differentiation of fibroblast to adipocytes. Nature (London) 358: 334–337. 61 Kleuss, C., J. Hescheler, C. Ewel, W. Rosenthal, G. Schultz &B. Wittig. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature (London) 353: 43–48. 62 Kleuss, C., H. Scherübl, J. Hescheler, G. Schultz &B. Wittig. 1992. Different β-subunits determine G-protein interaction with transmembrane receptors. Nature (London) 358: 424–426. 63 Baertschi, A. J., Y. Audigier, P-M. Lledo, J. M. Israel, J. Bockaert &J-D. Vincent. 1992. Dialysis of lactotropes with antisense oligonucleotides assigns G-protein subtypes to their channel effectors. Mol. Endocrinol. 6: 2257–2265. 64 Lledo, P-M., P. Vernier, J-D. Vincent, W. T. Mason &R. Zorec. 1993. Inhibition of rab3B expression attenuates calcium-dependent exocytosis in rat anterior pituitary cells. Nature (London) 364: 540–544. 65 Thomas, P., A. Surprenant &W. Almers. 1990. Cytosolic Ca2+, exocytosis, and endocytosis 9in single melanotrophs of the rat pituitary. Neuron 5: 723–733. 66 Zorec, R., S. K. Sikdar &W. T. Mason. 1991. Increased cytosolic calcium stimulates exocytosis in bovine lactotrophs. J. Gen. Physiol. 97: 473–497. 67 Fischer von Mollard, G., G. A. Mignery, M. Baumert, M. S. Perin, T. J. Hanson, P. M. Burger, R. Jahn &T. C. Südhof. 1990. Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. U.S.A. 87: 1988–1992. 68 Regazzi, R., A. Kikuchi, Y. Takai &C. B. Wollheim. 1992. The small GTP binding proteins in the cytosol of insulin-secreting cells are complexed to GDP-dissociation inhibitor proteins. J. Biol. Chem. 267: 17512–17519. 69 Padfield, P. J., W. E. Balch &J. D. Jamieson. 1992. A synthetic peptide of the rab3a effector domain stimulates amylase release from permeabilized pancreatic acini. Proc. Natl. Acad. Sci. U.S.A. 89: 1656–1660. 70 Edwardson, J. M., C. M. MacLean &G. J. Law. 1993. Synthetic peptides of the rab3 effector domain stimulate a membrane fusion event in regulated exocytosis. FEBS Lett. 320: 52–56. Citing Literature Volume710, Issue1Toxins and ExocytosisMarch 1994Pages 301-318 ReferencesRelatedInformation

Referência(s)