Artigo Revisado por pares

Elasticity of some mantle crystal structures 3. Spessartite-almandine garnet

1974; American Geophysical Union; Volume: 79; Issue: 17 Linguagem: Inglês

10.1029/jb079i017p02607

ISSN

2156-2202

Autores

Herbert F. Wang, Gene Simmons,

Tópico(s)

earthquake and tectonic studies

Resumo

Journal of Geophysical Research (1896-1977)Volume 79, Issue 17 p. 2607-2613 Elasticity of some mantle crystal structures 3. Spessartite-almandine garnet Herbert Wang, Herbert WangSearch for more papers by this authorGene Simmons, Gene SimmonsSearch for more papers by this author Herbert Wang, Herbert WangSearch for more papers by this authorGene Simmons, Gene SimmonsSearch for more papers by this author First published: 10 June 1974 https://doi.org/10.1029/JB079i017p02607Citations: 79AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The single-crystal elastic constants and their pressure derivatives for a spessartite-almandine garnet ((Mn, Fe)3Al2Si3O12) have been determined at room temperature by the pulse echo overlap method. The elastic constants at P = 1 bar are C11 = 3.085 Mbar, C12 = 1.123 Mbar, and C44 = 0.948 Mbar, within 3% of previous measurements on Mn-Fe and Mg-Fe garnets. The pressure derivative of the adiabatic bulk modulus is 5.0. Available seismic parameter ϕ data for natural garnets fit a relation ϕ = b/ reasonably well (where is the mean atomic weight and b is a constant). This relation ϕ = b/ is based on the assumption that interatomic force constants are the same in an isostructural series. Synthetic garnets fit a line segment whose slope is different from that of the natural garnet segment; this offset can be attributed to large differences in the ionic radii of the cations occupying the different coordination sites. Pyroxenes in the MgSiO3-FeSiO3 series, when they are transformed into the garnet structure, are expected to have cation radii in the coordination sites nearly equal to those in the pyrope-almandine garnet series. Hence because garnet-MgSiO3 and pyrope have the same mean atomic weights, the seismic parameters will also be the same. References Ahrens, T. J., Petrologic properties of the upper 670 km of the earth's mantle: Geophysical implications, Phys. Earth Planet. Interiors, 7, 167–186, 1973. Ahrens, T. J., E. S. Gaffney, Dynamic compression of enstatite, J. Geophys. Res., 76, 5504–5513, 1971. Anderson, D. L., A seismic equation of state, Geophys. J., 13, 9–30, 1967. Anderson, D. L., O. L. Anderson, The bulk modulus-volume relationship for oxides, J. Geophys. Res., 75, 3494–3500, 1970. Anderson, O. L., J. E. Nafe, The bulk modulus-volume relationship for oxide compounds and related geophysical problems, J. Geophys. Res., 70, 3951–3963, 1965. Bateman, T. B., Elastic moduli of single-crystal europium iron garnet and yttrium iron garnet, J. Appl. Phys., 37, 2194–2195, 1966. Bozorth, R. M., Ferromagnetism, 684, Van Nostrand Reinhold, New York, 1951. Chung, D. H., Birch's law: Why is it so good?, Science, 177, 261–263, 1972. Chung, D. H., D. J. Silversmith, B. B. Chick, A modified ultrasonic pulse-echo-overlap method for determining sound velocities and attenuation of solids, Rev. Sci. Instrum., 40, 718–720, 1969. Duba, A., B. Olinger, Compression of garnet to 100 kbar, J. Geophys. Res., 77, 2496–2499, 1972. Eastman, D. E., Measurement of third-order elastic moduli of yttrium iron garnet, J. Appl. Phys., 37, 2312–2316, 1966. Geller, S., Crystal chemistry of the garnets, Z. Kristallogr., 125, 1–47, 1967. Graham, L. J., R. Chang, Elastic moduli of single-crystal gadolinium gallium garnet, J. Appl. Phys., 41, 2247–2248, 1970. Halleck, P. M., The compression and compressibility of grossular garnet: A comparison of X-ray and ultrasonic methods, Ph.D. thesis, 82 pp.,Univ. of Chicago,Chicago, Ill.,1973. Kumazawa, M., The elastic constants of single-crystal orthopyroxene, J. Geophys. Res., 74, 5973–5980, 1969. Liebermann, R. C., Elasticity of pyroxene-garnet and pyroxene-ilmenite phase transformations in germanates, Phys. Earth Planet. Interiors, 1974. Liebermann, R. C., A. E. Ringwood, Birch's law and polymorphic phase transformations, J. Geophys. Res., 78, 6926–6932, 1973. Mizutani, H., Y. Hamano, Y. Ida, S. Akimoto, Compressional wave velocities of fayalite, Fe2SiO4 spinel, and coesite, J. Geophys. Res., 75, 2741–2747, 1970. Novak, G. A., G. V. Gibbs, The crystal chemistry of the silicate garnets, Amer. Mineral., 56, 791–825, 1971. Papadakis, E. P., Ultrasonic phase velocity by the pulse-echo-overlap method incorporating diffraction phase corrections, J. Acoust. Soc. Amer., 42, 1045–1051, 1967. Papadakis, E. P., Effect of multimode guided-wave propagation on ultrasonic phase velocity measurements: Problem and remedy, J. Acoust. Soc. Amer., 45, 1547–1555, 1969. Ringwood, A. E., The pyroxene-garnet transformation in the earth's mantle, Earth Planet. Sci. Lett., 2, 255–263, 1967. Ringwood, A. E., Phase transformations in the mantle, Earth Planet. Sci. Lett., 5, 401–412, 1969. Ringwood, A. E., Phase transformations and the constitution of the mantle, Phys. Earth Planet. Interiors, 3, 109–155, 1970. Ryzhova, T. V., L. M. Reshchikova, K. S. Aleksandrov, Elastic properties of rock-forming minerals, 6, Garnets, Izv. Acad. Sci. USSR Phys. Solid Earth, 7, 447–450, 1966. Shankland, T. J., Velocity-density systematics: Derivation from Debye theory and the effect of ionic size, J. Geophys. Res., 77, 3750–3758, 1972. Shannon, R. D., C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr., Sect. B, 25, 925–946, 1969. Simmons, G., H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook 2nd ed., 370, MIT Press, Cambridge, Mass., 1971. Simpson, D. W., C. Wright, J. R. Cleary, Double discontinuity in the upper mantle, Nature, 231, 201–203, 1971. Smith, J. V., B. Mason, Pyroxene-garnet transformation in Coorara meteorite, Science, 168, 832–833, 1970. Soga, N., Elastic constants of garnet under pressure and temperature, J. Geophys. Res., 72, 4227–4234, 1967. Spencer, E. G., R. T. Denton, T. B. Bateman, W. B. Snow, L. G. Van Uitert, Microwave elastic properties of nonmagnetic garnets, J. Appl. Phys., 34, 3059–3060, 1963. Takahashi, T., L. Liu, Compression of ferromagnesian garnets and the effect of solid solutions on the bulk modulus, J. Geophys. Res., 75, 5757–5766, 1970. Thomsen, L., Elastic shear moduli and crystal stability at high P and T, J. Geophys. Res., 76, 1342–1348, 1971. Thurston, R. N., Effective elastic coefficients for wave propagation in crystals under stress, J. Acoust. Soc. Amer., 37, 348–356, 1965a. Thurston, R. N., Erratum, J. Acoust. Soc. Amer., 37, 1147, 1965b. Verma, R. K., Elasticity of some high-density crystals, J. Geophys. Res., 65, 757–766, 1960. Wang, H., G. Simmons, Elasticity of some mantle crystal structures, 1, Pleonaste and hercynite spinel, J. Geophys. Res., 77, 4379–4392, 1972. Whitcomb, J. H., D. L. Anderson, Reflection of P′P′ seismic waves from discontinuities in the mantle, J. Geophys. Res., 75, 5713–5728, 1970. Citing Literature Volume79, Issue17Solid Earth and Planets10 June 1974Pages 2607-2613 ReferencesRelatedInformation

Referência(s)