Artigo Revisado por pares

An Introduction to Lie Groups and Lie Algebras, with Applications. III: Computational Methods and Applications of Representation Theory

1969; Society for Industrial and Applied Mathematics; Volume: 11; Issue: 4 Linguagem: Inglês

10.1137/1011087

ISSN

1095-7200

Autores

Johan G. F. Belinfante, Bernard Kolman,

Tópico(s)

Algebraic structures and combinatorial models

Resumo

Previous article Next article An Introduction to Lie Groups and Lie Algebras, with Applications. III: Computational Methods and Applications of Representation TheoryJ. G. Belinfante and B. KolmanJ. G. Belinfante and B. Kolmanhttps://doi.org/10.1137/1011087PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] V. K. Agrawala and , J. G. Belinfante, Graphical formulation of recoupling theory for any compact group, Ann. Physics., 49 (1968), 130–170 10.1016/0003-4916(68)90187-5 0159.31801 CrossrefISIGoogle Scholar[1A] C. M. Andersen, Clebsch-Gordan series for symmetrized tensor products, J. Mathematical Phys., 8 (1967), 988–997 10.1063/1.1705333 MR0218486 0162.58402 CrossrefISIGoogle Scholar[2] J.-P. Antoine, Représentations irréductibles du groupe ${\rm SU}\sb{3}$, Ann. Soc. Sci. Bruxelles Sér. I, 77 (1963), 150–162 MR0166306 0115.25604 Google Scholar[3] J.-P. Antoine and , D. Speiser, Characters of irreducible representations of the simple groups. I. General theory, J. Mathematical Phys., 5 (1964), 1226–1234 10.1063/1.1704230 MR0168699 0126.06104 CrossrefISIGoogle Scholar[4] J.-P. Antoine and , D. Speiser, Characters of irreducible representations of the simplegroups. II. Application to classical groups, J. Mathematical Phys., 5 (1964), 1560–1572 10.1063/1.1931189 MR0168700 0134.43704 CrossrefISIGoogle Scholar[5] E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957x+214, vol. 3 MR0082463 0077.02101 Google Scholar[6] G. E. Baird and , L. C. Biedenharn, On the representations of the semisimple Lie groups. II, J. Mathematical Phys., 4 (1963), 1449–1466 10.1063/1.1703926 MR0156922 CrossrefISIGoogle Scholar[7] G. E. Baird and , L. C. Biedenharn, On the representations of the semisimple Lie groups. III. The explicit conjugation operation for ${\rm SU}\sb{n}$, J. Mathematical Phys., 5 (1964), 1723–1730 10.1063/1.1704095 MR0170978 CrossrefISIGoogle Scholar[8] G. E. Baird and , L. C. Biedenharn, On the representations of the semisimple Lie groups. IV. A canonical classification for tensor operators in ${\rm SU}\sb{3}$, J. Mathematical Phys., 5 (1964), 1730–1747 10.1063/1.1704096 MR0170979 CrossrefISIGoogle Scholar[9] G. E. Baird and , L. C. Biedenharn, On the representations of the semisimple Lie groups. V. Some explicit Wigner operators for ${\rm SU}\sb{3}$, J. Mathematical Phys., 6 (1965), 1847–1854 10.1063/1.1704732 MR0187758 0162.58302 CrossrefISIGoogle Scholar[10] M. Bander and , C. Itzykson, Group theory and the hydrogen atom. I, II, Rev. Modern Phys., 38 (1966), 330–345; 346–358 MR0205613 Google Scholar[11] R. E. Behrends, , J. Dreitlein, , C. Fronsdal and , W. Lee, Simple groups and strong interaction symmetries, Rev. Modern Phys., 34 (1962), 1–40 10.1103/RevModPhys.34.1 MR0156617 0108.22604 CrossrefGoogle Scholar[12] J. G. Belinfante and , R. E. Cutkosky, Baryon supermultiplet, Phys. Rev. Lett., 14 (1965), 33–35 10.1103/PhysRevLett.14.33 MR0177712 CrossrefISIGoogle Scholar[13] J. G. Belinfante, , B. Kolman and , H. A. Smith, An introduction to Lie groups and Lie algebras, with applications, SIAM Rev., 8 (1966), 11–46 10.1137/1008002 MR0200380 0136.29702 LinkISIGoogle Scholar[14] J. G. Belinfante, , B. Kolman and , H. A. Smith, An introduction to Lie groups and Lie algebras, with applications. II. The basic methods and results of representation theory, SIAM Rev., 10 (1968), 160–195 10.1137/1010030 MR0236312 0176.30202 LinkISIGoogle Scholar[15] J. G. Belinfante and , G. I. Opat, Weight diagrams for SU(3), 1964, unpublished Google Scholar[16] J. G. Belinfante and , G. H. Renninger, Ambiguity of the meson-baryon couplings in a bootstrap static model of $SU(6)$ symmetry, Phys. Rev., 148 (1966), 1573–1578 10.1103/PhysRev.148.1573 CrossrefISIGoogle Scholar[17] L. C. Biedenharn, On the representations of the semisimple Lie groups. I. The explicit construction of invariants for the unimodular unitary group in N dimensions, J. Mathematical Phys., 4 (1963), 436–445 10.1063/1.1703974 MR0147582 0132.44301 CrossrefISIGoogle Scholar[18] L. C. Biedenharn, The generalisation of the Wigner-Racah angular momentum calculus, Phys. Lett., 3 (1962/1963), 254–256 MR0149877 CrossrefISIGoogle Scholar[19] L. C. Biedenharn, The generalization of the Wigner-Racah angular momentum calculus. II, Phys. Lett., 14 (1965), 254–255 MR0186174 CrossrefISIGoogle Scholar[20] Claude C. Chevalley, The algebraic theory of spinors, Columbia University Press, New York, 1954viii+131 MR0060497 0057.25901 CrossrefGoogle Scholar[20A] C. Chevalley, On certain simple groups, Tôhoku Math. J. (2), 7 (1955), 14–66 CrossrefGoogle Scholar[21] G. F. Gell-Mann, M. Chew and , A. H. Rosenfeld, Strongly interacting particles, Sci. Amer., 210 (1964), 74–93 CrossrefISIGoogle Scholar[22] H. S. M. Coxeter and , W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, Berlin, 1957viii+155 MR0088489 0077.02801 CrossrefGoogle Scholar[22A] Jean-Robert Derome and , W. T. Sharp, Racah algebra for an arbitrary group, J. Mathematical Phys., 6 (1965), 1584–1590 10.1063/1.1704698 MR0187762 0128.46403 CrossrefISIGoogle Scholar[23A] J. J. de Swart, The octet model and its Clebsch-Gordan coefficients, Rev. Modern Phys., 35 (1963), 916–939 10.1103/RevModPhys.35.916 MR0163683 0138.46105 CrossrefGoogle Scholar[23B] J. J. de Swart, Erratum: The octet model and its Clebsch-Gordan coefficients, Rev. Modern Phys., 37 (1965), 326– 10.1103/RevModPhys.37.326 MR0177715 0138.46105 CrossrefGoogle Scholar[24] Robert H. Dicke and , James P. Wittke, Introduction to quantum mechanics, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1960xi+369 MR0118327 0093.20701 Google Scholar[25] E. B. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. (2), 6 (1957), 111–244 0077.03404 Google Scholar[26] E. B. Dynkin, The maximal subgroups of the classical groups. Supplement: Survey of the basic concepts and facts in the theory of linear representations of semisimple Lie algebras, Amer. Math. Soc. Transl. (2), (), 245–378 0077.03403 Google Scholar[27] A. R. Edmonds, Angular momentum in quantum mechanics, Investigations in Physics, Vol. 4, Princeton University Press, Princeton, N.J., 1957viii+146 MR0095700 0079.42204 CrossrefGoogle Scholar[28] U. Fano and , G. Racah, Irreducible tensorial sets, Pure and Applied Physics. Vol. 4, Academic Press Inc., New York, 1959vii+171 MR0099846 Google Scholar[29] H. Freudenthal, Lie groups, Lecture Notes, Yale University, New Haven, 1961 Google Scholar[30] Murray Gell-Mann and , Yuval Ne'eman, The eightfold way, W. A. Benjamin, Inc., New York-Amsterdam, 1964xi+317 MR0180214 Google Scholar[31] M. Gourdin, Unitary symmetries and their application to high energy physics, North-Holland Publishing Co., Amsterdam, 1967xi+303 MR0225533 0152.23401 CrossrefGoogle Scholar[32] G. Gursey, Group theoretical concepts and methods in elementary particle physics, Lectures of the Istanbul Summer School of Theoretical Physics, July 16-August 4, Vol. 1962, Gordon and Breach Science Publishers, New York, 1964vii+425 MR0170636 Google Scholar[33] F. Gürsey and , L. A. Radicati, Spin and unitary spin independence of strong interactions, Phys. Rev. Lett., 13 (1964), 173–175 MR0167226 CrossrefISIGoogle Scholar[34] Morton Hamermesh, Group theory and its application to physical problems, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1962xv+509, New York, Chap. 10. MR0136667 0100.36704 CrossrefGoogle Scholar[35] W. Heisenberg, On the structure of the atomic nucleus. I, Z. Physik, 77 (1932), 1–11 CrossrefGoogle Scholar[36] C. Itzykson and , M. Nauenberg, Unitary groups: Representations and decompositions, Rev. Modern Phys., 38 (1966), 95–120 10.1103/RevModPhys.38.95 MR0198877 0138.46401 CrossrefGoogle Scholar[37] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962ix+331 MR0143793 0121.27504 Google Scholar[37A] Bertram Kostant, A formula for the multiplicity of a weight, Trans. Amer. Math. Soc., 93 (1959), 53–73 MR0109192 0131.27201 CrossrefGoogle Scholar[38] G. Loupias, , M. Sirugue and , J. C. Trotin, On simple Lie groups of rank 3, Nuovo Cimento (10), 38 (1965), 1303–1325 MR0195486 0128.46405 CrossrefISIGoogle Scholar[39] S. Okubo, Note on unitary symmetry in strong interactions, Progr. Theoret. Phys. (Japan), 27 (1962), 949–966 10.1143/PTP.27.949 0125.22606 CrossrefISIGoogle Scholar[40] A. Pais, Dynamical symmetry in particle physics, Revs. Modern Phys., 38 (1966), 215–255 10.1103/RevModPhys.38.215 CrossrefISIGoogle Scholar[41] Giulio Racah, On the decomposition of tensors by contraction, Rev. Modern Physics, 21 (1949), 494–496 10.1103/RevModPhys.21.494 MR0034089 0038.32302 CrossrefGoogle Scholar[41A] Rimhak Ree, Construction of certain semi-simple groups, Canad. J. Math., 16 (1964), 490–508 MR0163990 0125.01801 CrossrefISIGoogle Scholar[42] Daniel Edwin Rutherford, Substitutional Analysis, Edinburgh, at the University Press, 1948xi+103 MR0027272 0038.01602 Google Scholar[43] Bunji Sakita, Electromagnetic properties of baryons in the supermultiplet scheme of elementary particles, Phys. Rev. Lett., 13 (1964), 643–646 10.1103/PhysRevLett.13.643 MR0174312 CrossrefISIGoogle Scholar[43A] David A. Smith, On fixed points of automorphisms of classical Lie algebras, Pacific J. Math., 14 (1964), 1079–1089 MR0167506 0142.27603 CrossrefISIGoogle Scholar[44] David A. Smith, Chevalley bases for Lie modules, Trans. Amer. Math. Soc., 115 (1965), 283–299 MR0195996 0142.27503 CrossrefISIGoogle Scholar[45] David A. Smith, A basis algorithm for finitely generated abelian groups, Math. Algorithms, 1 (1966), 13–26 MR0251136 1004.68078 Google Scholar[46] D. Speiser, Fundamental representations of Lie groups, Helv. Phys. Acta, 38 (1965), 73–97 MR0177708 0137.18502 Google Scholar[47] David R. Speiser and , Jan Tarski, Possible schemes for global symmetry, J. Mathematical Phys., 4 (1963), 588–612 10.1063/1.1703996 MR0151208 0126.24602 CrossrefISIGoogle Scholar[48] N. Straumann, On the Clebsch-Gordan series of semisimple Lie algebras, Helv. Phys. Acta, 38 (1965), 56–64 MR0185046 0151.34102 Google Scholar[49] Jan Tarski, Partition function for certain simple Lie algebras, J. Mathematical Phys., 4 (1963), 569–574 10.1063/1.1703992 MR0147584 0116.02401 CrossrefISIGoogle Scholar[50] E. P. Wigner, On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei, Phys. Rev., 51 (1937), 106–119 10.1103/PhysRev.51.106 0015.38003 CrossrefGoogle Scholar[51] Chen Ning Yang, Elementary particles. A short history of some discoveries in atomic physics, Princeton Univ. Press, Princeton, N.J., 1961x+68 pp. (1 plate; 1 table) MR0175558 Google Scholar[52] A. Zichichi, Symmetries in Elementary Particle Physics, Academic Press, New York, 1965 Google Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Graphical tensor product reduction scheme for the Lie algebras so(5)=sp(2) , su(3) , and g(2)Annals of Physics, Vol. 371 | 1 Aug 2016 Cross Ref Lie algebras of Lie groups, Kac-Moody groups, supergroups, and some specialized topics in finite- and infinite-dimensional Lie algebrasIntroduction to Finite and Infinite Dimensional Lie (Super)algebras | 1 Jan 2016 Cross Ref BibliographyIntroduction to Finite and Infinite Dimensional Lie (Super)algebras | 1 Jan 2016 Cross Ref INTEGER CLEBSCH-GORDAN COEFFICIENTS FOR LIE ALGEBRA REPRESENTATIONSComputers in Nonassociative Rings and Algebras | 1 Jan 1977 Cross Ref Lie groups and homogeneous spacesJournal of Soviet Mathematics, Vol. 4, No. 5 | 1 Nov 1975 Cross Ref Computer Approaches to the Representations of Lie AlgebrasJournal of the ACM, Vol. 19, No. 4 | 1 Oct 1972 Cross Ref Generation of the Weyl group on a computerJournal of Computational Physics, Vol. 7, No. 2 | 1 Apr 1971 Cross Ref Bootstrap Models and a Special Property of the Unitary Lie AlgebrasPhysical Review D, Vol. 3, No. 4 | 15 February 1971 Cross Ref THE PAPERSMathematical Software | 1 Jan 1971 Cross Ref Weight diagrams for lie group representations: A computer implementation of Freudenthal's algorithm in ALGOL and FORTRANBIT, Vol. 9, No. 4 | 1 Dec 1969 Cross Ref Volume 11, Issue 4| 1969SIAM Review429-672 History Submitted:30 January 1968Published online:18 July 2006 InformationCopyright © 1969 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1011087Article page range:pp. 510-543ISSN (print):0036-1445ISSN (online):1095-7200Publisher:Society for Industrial and Applied Mathematics

Referência(s)
Altmetric
PlumX