Artigo Revisado por pares

Theoretical and spectroscopic study of hydrogen bond vibrations in imidazole and its deuterated derivative

2010; Elsevier BV; Volume: 372; Issue: 1-3 Linguagem: Inglês

10.1016/j.chemphys.2010.04.034

ISSN

1873-4421

Autores

Marek J. Wójcik, Jacek Kwiendacz, Marek Boczar, Łukasz Boda, Yukihiro Ozaki,

Tópico(s)

Photochemistry and Electron Transfer Studies

Resumo

Theoretical simulation of the bandshape and fine structure of the N–H(D) stretching band is presented for imidazole and its deuterated derivative taking into account adiabatic coupling between the high-frequency N–H(D) stretching and the low-frequency N⋯N stretching vibrations, anharmonicity of the potentials for the low-frequency vibrations in the ground and excited state of the N–H(D) stretching mode, Fermi resonance between the N–H(D) stretching and the first overtone of the N–H(D) bending vibrations, and electric anharmonicity. The vibrational potential functions describing N–H and N⋯N stretching modes have been obtained from ab initio calculations. The effect of deuteration has been successfully reproduced by our model calculations. Infrared, far-infrared, Raman and low-frequency Raman spectra of the polycrystalline imidazole have been recorded. The geometry and experimental frequencies are compared with the results of harmonic MP2/6-311++G∗∗ and anharmonic B3LYP/6-311++G∗∗ calculations.

Referência(s)
Altmetric
PlumX