Artigo Acesso aberto Revisado por pares

A determination coefficient for a linear regression model with imprecise response

2010; Wiley; Volume: 22; Issue: 4 Linguagem: Inglês

10.1002/env.1056

ISSN

1180-4009

Autores

Maria Brigida Ferraro, Ana Colubi, Gil González–Rodríguez, Renato Coppi,

Tópico(s)

Fuzzy Logic and Control Systems

Resumo

EnvironmetricsVolume 22, Issue 4 p. 516-529 Research Article A determination coefficient for a linear regression model with imprecise response Maria Brigida Ferraro, Corresponding Author Maria Brigida Ferraro [email protected] Dipartimento di Statistica, Probabilitá e Statistiche Applicate, Sapienza Università di Roma, Piazzale Aldo Moro 5 00185, Rome, ItalyDipartimento di Statistica, Probabilità e Statistiche Applicate, Sapienza Università di Roma, Piazzale Aldo Moro 5 00185, Rome, Italy.Search for more papers by this authorAna Colubi, Ana Colubi Departamento de Estadística e I.O. y D.M., Universidad de Oviedo, Calle Calvo Sotelo S/N 33007, Oviedo, Asturias, SpainSearch for more papers by this authorGil González-Rodríguez, Gil González-Rodríguez European Centre for Soft Computing, Edificio Científico-Tecnológico, Calle Gonzalo Gutiérrez Quirós S/N 33600 Mieres, Asturias, SpainSearch for more papers by this authorRenato Coppi, Renato Coppi Dipartimento di Statistica, Probabilitá e Statistiche Applicate, Sapienza Università di Roma, Piazzale Aldo Moro 5 00185, Rome, ItalySearch for more papers by this author Maria Brigida Ferraro, Corresponding Author Maria Brigida Ferraro [email protected] Dipartimento di Statistica, Probabilitá e Statistiche Applicate, Sapienza Università di Roma, Piazzale Aldo Moro 5 00185, Rome, ItalyDipartimento di Statistica, Probabilità e Statistiche Applicate, Sapienza Università di Roma, Piazzale Aldo Moro 5 00185, Rome, Italy.Search for more papers by this authorAna Colubi, Ana Colubi Departamento de Estadística e I.O. y D.M., Universidad de Oviedo, Calle Calvo Sotelo S/N 33007, Oviedo, Asturias, SpainSearch for more papers by this authorGil González-Rodríguez, Gil González-Rodríguez European Centre for Soft Computing, Edificio Científico-Tecnológico, Calle Gonzalo Gutiérrez Quirós S/N 33600 Mieres, Asturias, SpainSearch for more papers by this authorRenato Coppi, Renato Coppi Dipartimento di Statistica, Probabilitá e Statistiche Applicate, Sapienza Università di Roma, Piazzale Aldo Moro 5 00185, Rome, ItalySearch for more papers by this author First published: 03 November 2010 https://doi.org/10.1002/env.1056Citations: 32Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Fuzzy sets are often used to handle the imprecision/vagueness that affects some characteristics in environmental sciences. A determination coefficient is introduced in order to quantify the degree of relationship between an imprecise response variable and a scalar explanatory predictor in a linear regression problem. An estimator of such coefficient useful to measure the goodness of fit of the model is proposed and its strong consistency is proved. Moreover, a specific linear independence testing procedure is established and both the asymptotic significance level and the power under local alternatives are established. Since the asymptotic results require large samples, a consistent bootstrap approach is developed. The empirical behavior of the suggested methods is illustrated by means of some simulations and real-life examples. Copyright © 2010 John Wiley & Sons, Ltd. REFERENCES Adriaenssens V, De Baets B, Goethalsa PLM, De Pauwa N. 2004. Fuzzy rule-based models for decision support in ecosystem management. The Science of the Total Environment 319: 1–12. Bickel PJ, Freedman DA 1981. Some asymptotic theory for the bootstrap. The Annals of Statistics 9: 1196–1217. Colubi A. 2009. Statistical inference about the means of fuzzy random variables: Applications to the analysis of fuzzy- and real-valued data. Fuzzy Sets and Systems 160: 344–356. Coppi R, D'Urso P, Giordani P, Santoro A. 2006. Least squares estimation of a linear regression model with LR fuzzy response. Computational Statistics & Data Analysis 51: 267–286. Efron B, Tibshirani RJ. 1993. An Introduction to the Bootstrap. Chapman & Hall: New York. Ferraro MB, Coppi R, González-Rodríguez G, Colubi A. 2010. A linear regression model for imprecise response. International Journal of Approximate Reasoning (doi:10.1016/j.ijar.2010.04.003). Gil MA, Montenegro M, González-Rodríguez G, Colubi A, Casals MR. 2006. Bootstrap approach to the multi-sample test of means with imprecise data. Computational Statistics & Data Analysis 51: 148–162. Gil MA, González-Rodríguez G, Colubi A, Montenegro M. 2007. Testing linear independence in linear models with interval-valued data. Computational Statistics & Data Analysis 51: 3002–3015. Näther W. 2006. Regression with fuzzy random data. Computational Statistics & Data Analysis 51: 235–252. Puri ML, Ralescu DA. 1986. Fuzzy random variables. Journal of Mathematical Analysis and Applications 114: 409–422. Salski A. 2007. Fuzzy clustering of fuzzy ecological data. Ecological Informatics 2: 262–269. Simeonov V, Puxbaum H, Tsakowski S, Sarbu C, Kalina M. 1999. Classification and receptor modeling of wet precipitation data from central Austria (1984–1993). Environmetrics 10: 137–152. Tscherkoa D, Kandelera E, Bárdossy A. 2007. Fuzzy classification of microbial biomass and enzyme activities in grassland soils. Soil Biology & Biochemistry 39: 1799–1808. Van Broekhoven E, Adriaenssens V, De Baets B, Verdonschot PFM. 2006. Fuzzy rule-based macroinvertebrate habitat suitability models for running waters. Ecological Modelling 198: 71–84. Van Broekhoven E, Adriaenssens V, De Baets B. 2007. Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study. International Journal of Approximate Reasoning 44: 65–90. Viertl R. 1990. Statistical inference for fuzzy data in environmetrics. Environmetrics 1: 37–42. Viertl R. 1997. On statistical inference for non-precise data. Environmetrics 8: 541–568. Yang MS, Ko CH. 1996. On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy Sets and Systems 84: 49–60. Zadeh LA. 1965. Fuzzy sets. Information and Control 8: 338–353. Citing Literature Volume22, Issue4June 2011Pages 516-529 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX