Stress‐Related Activation of Cerebral Dopaminergic Systemsa
1988; Wiley; Volume: 537; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1988.tb42106.x
ISSN1749-6632
Autores Tópico(s)Tryptophan and brain disorders
ResumoAnnals of the New York Academy of SciencesVolume 537, Issue 1 p. 188-205 Stress-Related Activation of Cerebral Dopaminergic Systemsa ADRIAN J. DUNN, ADRIAN J. DUNN Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610Search for more papers by this author ADRIAN J. DUNN, ADRIAN J. DUNN Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610Search for more papers by this author First published: October 1988 https://doi.org/10.1111/j.1749-6632.1988.tb42106.xCitations: 141 a This work was supported by U.S. National Institute of Mental Health Grant MH 25486 and by Office of Naval Research Grant N0001-4-85K-0300. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Cannon, W. B. 1914. The emergency function of the adrenal medulla in pain and the major emotions. Am. J. Physiol. 33: 356–372. 10.1152/ajplegacy.1914.33.2.356 CASWeb of Science®Google Scholar 2 Thierry, A.-M., F. Javoy, J. Glowinski & S. S. Kety. 1968. Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. J. Pharmacol. Exp. Ther. 163: 163–171. CASPubMedWeb of Science®Google Scholar 3 Stone, E. A. 1975. Stress and catecholamines. In Catecholamines and Behavior. Vol. 2 Neuropsychopharmacology. A. J. Friedhoff, Ed.: 31–72. Plenum. New York . 10.1007/978-1-4684-3138-4_2 Google Scholar 4 Anisman, H. 1978. Neurochemical changes elicited by stress. In Psychopharmacology of Aversively Motivated Behavior. H. Anisman and O. Bignami, Eds.: 119–172. Plenum. New York . 10.1007/978-1-4684-2394-5_3 Google Scholar 5 Dunn, A. J. & N. R. Kramarcy. 1984. Neurochemical responses in stress: Relationships between the hypothalamic-pituitary-adrenal and catecholamine systems. In Handbook of Psychopharmacology, Vol. 18. L. L. Iversen, S. D. Iversen, and S. H. Snyder, Eds.: 455–515. Plenum. New York . Google Scholar 6 Axelrod, J. & T. D. Reisine. 1984. Stress hormones: Their interaction and regulation. Science 224: 452–459. 10.1126/science.6143403 CASPubMedWeb of Science®Google Scholar 7 Glavin, G. B. 1985. Stress and brain noradrenaline: A review. Neurosci. Biobehav. Rev. 9: 233–243. 10.1016/0149-7634(85)90048-X CASPubMedWeb of Science®Google Scholar 8 Thierry, A. M., J. P. Tassin, G. Blanc & J. Glowinski. 1976. Selective activation of the mesocortical DA system by stress. Nature 263: 242–244. 10.1038/263242a0 CASPubMedWeb of Science®Google Scholar 9 Lavielle, S., J.-P. Tassin, A.-M. Thierry, G. Blanc, D. Herve, C. Barthelemy & J. Glowinski. 1979. Blockade by benzodiazepines of the selective high increase in dopamine turnover induced by stress in mesocortical dopaminergic neurons of the rat. Brain Res. 168: 585–594. 10.1016/0006-8993(79)90311-1 CASPubMedWeb of Science®Google Scholar 10 Fadda, F., A. Argiolas, M. R. Melis, A. H. Tissari, P. L. Onali & G. L. Gessa. 1978. Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in n. accumbens: Reversal by diazepam. Life Sci. 23: 2219–2224. 10.1016/0024-3205(78)90207-2 CASPubMedWeb of Science®Google Scholar 11 Tissari, A. H., A. Argiolas, F. Fadda, G. Serra & G. L. Gessa. 1979. Foot-shock stress accelerates non-striatal dopamine synthesis without activating tyrosine hydroxylase. Naunyn-Schmiedeberg's Arch. Pharmacol. 308: 155–157. 10.1007/BF00499058 CASPubMedWeb of Science®Google Scholar 12 Reinhard, J. F., M. J. Bannon & R. H. Roth. 1982. Acceleration by stress of dopamine synthesis and metabolism in prefrontal cortex: Antagonism by diazepam. Naunyn-Schmiedeberg's Arch. Pharmacol. 318: 374–377. 10.1007/BF00501182 CASPubMedWeb of Science®Google Scholar 13 Bannon, M. J. & R. H. Roth. 1983. Pharmacology of mesocortical dopamine neurons. Pharmacol. Rev. 35: 53–68. CASPubMedWeb of Science®Google Scholar 14 Kramarcy, N. R., R. L. Delanoy & A. J. Dunn. 1984. Footshock treatment activates catecholamine synthesis in slices of mouse brain regions. Brain Res. 290: 311–319. 10.1016/0006-8993(84)90949-1 CASPubMedWeb of Science®Google Scholar 15 Dunn, A. J. 1984. Regional responses of biogenic amine catabolites to stressors in the mouse. Trans. Am. Soc. Neurochem. 15: 203. Google Scholar 16 Claustre, Y., J. P. Rivy, T. Dennis & B. Scatton. 1986. Pharmacological studies on stress-induced increase in frontal cortical dopamine metabolism in the rat. J. Pharmacol. Exp. Ther. 238: 693–700. CASPubMedWeb of Science®Google Scholar 17 Dunn, A. J. 1987. Footshock or restraint stress causes a general activation of cerebral noradrenergic and dopaminergic systems. Psychoneuroendocrinol. In press. Google Scholar 18 Bliss, E. L., J. Aiilion & J. Zwanziger. 1968. Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress. J. Pharmacol. Exp. Ther. 164: 122–134. CASPubMedWeb of Science®Google Scholar 19 Bliss, E. L. & J. Ailion. 1971. Relationship of stress and activity to brain dopamine and homovanillic acid. Life Sci. Part I, 10: 1161–1169. 10.1016/0024-3205(71)90276-1 CASPubMedWeb of Science®Google Scholar 20 Dunn, A. J. & S. E. File. 1983. Cold restraint alters dopamine metabolism in frontal cortex, nucleus accumbens and neostriatum. Physiol. Behav. 31: 511–513. 10.1016/0031-9384(83)90074-4 PubMedWeb of Science®Google Scholar 21 Dunn, A. J., K. L. Elfvin & C. W. Berridge. 1986. Changes in plasma corticosterone and cerebral biogenic amines and their catabolites during training and testing of mice in passive avoidance behavior. Behav. Neural Biol. 46: 410–423. 10.1016/S0163-1047(86)90422-X CASPubMedWeb of Science®Google Scholar 22 Underwood, R. H. & G. H. Williams. 1972. The simultaneous measurement of aldosterone, cortisol, and corticosterone in human peripheral plasma by displacement analysis. J. Lab. Clin. Med. 79: 848–862. CASPubMedWeb of Science®Google Scholar 23 Gwosdow-Cohen, A., C. L. Chen & E. L. Besch. 1982. Radioimmunoassay (RIA) of serum corticosterone in rats. Proc. Soc. Exp. Biol. Med. 170: 29–34. 10.3181/00379727-170-41391 CASPubMedWeb of Science®Google Scholar 24 Warsh, J. J., D. Godse, S. W. Cheung & P. P. Li. 1981. Rat brain and plasma norepinephrine glycol metabolites determined by gas chromatography-mass fragmentography. J. Neurochem. 36: 893–901. 10.1111/j.1471-4159.1981.tb01678.x CASPubMedWeb of Science®Google Scholar 25 Hutchins, D. A., J. D. M. Pearson & D. F. Sharman. 1975. Striatal metabolism of dopamine in mice made aggressive by isolation. J. Neurochem. 24: 1151–1154. 10.1111/j.1471-4159.1975.tb03891.x CASPubMedWeb of Science®Google Scholar 26 Curzon, G., P. H. Hutson & P. J. Knott. 1979. Voltammetry in vivo: Effect of stressful manipulations and drugs on the caudate nucleus of the rat. Brit. J. Pharmacol. 66: 127–128 P. CASPubMedWeb of Science®Google Scholar 27 Kennedy, L. T. & M. J. Zigmond. 1980. Effects of restraint on dopamine turnover and tyrosine hydroxylase activity in rat frontal cortex. Soc. Neurosci. Abstr. 6: 44. Google Scholar 28 Keller, R. W., E. M. Stricker & M. J. Zigmond. 1983. Environmental stimuli but not homeostatic challenges produce apparent increases in dopaminergic activity in the striatum: An analysis by in vivo voltammetry. Brain Res. 279: 159–170. 10.1016/0006-8993(83)90174-9 PubMedWeb of Science®Google Scholar 29 Culman, J., C. C. Chiueh, M. Koulu & I. J. Kopin. 1984. Effect of acute restraint stress on dopamine and serotonin turnover in nigrostriatal and mesolimbic dopaminergic systems. Soc. Neurosci. Abstr. 10: 65. Google Scholar 30 Watanabe, H. 1984. Activation of dopamine synthesis in mesolimbic dopamine neurons by immobilization stress in the rat. Neuropharmacology 23: 1335–1338. 10.1016/0028-3908(84)90055-8 CASPubMedWeb of Science®Google Scholar 31 Blank, C. L., S. Sasa, R. Isernhaoen, L. R. Meyerson, D. Wassil, P. Wong, A. T. Modak & W. B. Stavinoha. 1979. Levels of norepinephrine and dopamine in mouse brain regions following microwave inactivation—Rapid post-mortem degradation of striatal dopamine in decapitated animals. J. Neurochem. 33: 213–219. 10.1111/j.1471-4159.1979.tb11723.x CASPubMedWeb of Science®Google Scholar 32 Ponzio, F., G. Achili & S. Algeri. 1981. A rapid and simple method for the determination of picogram levels of 3-methoxytyramine in brain tissue using liquid chromatography with electrochemical detection. J. Neurochem. 36: 1361–1367. 10.1111/j.1471-4159.1981.tb00573.x CASPubMedWeb of Science®Google Scholar 33 Ishikawa, K., S. Shibanoki, S. Saito & J. L. McGaugh. 1982. Effect of microwave irradiation on monoamine metabolism in dissected rat brain. Brain Res. 240: 158–161. 10.1016/0006-8993(82)90655-2 CASPubMedWeb of Science®Google Scholar 34 Westerink, B. H. C., F. J. Bosker & E. Wirix. 1984. Formation and metabolism of dopamine in nine areas of the rat brain: Modifications by haloperidol. J. Neurochem. 42: 1321–1327. 10.1111/j.1471-4159.1984.tb02790.x CASPubMedWeb of Science®Google Scholar 35 Ikarashi, Y., T. Sasahara & Y. Maruyama. 1985. Postmortem changes in catecholamines, indoleamines, and their metabolites in rat brain regions: Prevention with 10-kW microwave irradiation. J. Neurochem. 45: 935–939. 10.1111/j.1471-4159.1985.tb04083.x CASPubMedWeb of Science®Google Scholar 36 Mochetti, I., L. De Angelis & G. Racagni. 1981. Postmortem changes of normetanephrine determined by a mass-fragmentographic technique in different rat brain areas. J. Neurochem. 37: 1607–1609. 10.1111/j.1471-4159.1981.tb06334.x PubMedWeb of Science®Google Scholar 37 Curzon, G., M. H. Joseph & P. J. Knott. 1972. Effects of immobilization and food deprivation on rat brain tryptophan metabolism. J. Neurochem. 19: 1967–1974. 10.1111/j.1471-4159.1972.tb01486.x CASPubMedWeb of Science®Google Scholar 37a Dunn, A. J. 1988. Changes in plasma and brain tryptophan and brain serotonin and 5-hydroxyindoleacetic acid after footshock stress. Life Sci. 42: 1847–1853. 10.1016/0024-3205(88)90023-9 CASPubMedWeb of Science®Google Scholar 38 Herman, J. P., D. Guillonneau, R. Dantzer, B. Scatton, L. Semerdjian-Rouquier & M. Le Moal. 1982. Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 30: 2207–2214. 10.1016/0024-3205(82)90295-8 CASPubMedWeb of Science®Google Scholar 39 Akua, K., D. P. Kalra, C. P. Fawcett, L. Krulich & S. M. McCann. 1972. The effect of stress and nembutal on plasma levels of gonadotropins and prolactin in ovariectomized rats. Endocrinology 90: 707–715. 10.1210/endo-90-3-707 PubMedWeb of Science®Google Scholar 40 Moore, K. E. & K. T. Demarest. 1982. Tuberoinfundibular and tuberohypophyseal dopaminergic neurons. In Frontiers in Neuroendocrinology. Vol. 7. L. Martini and W. F. Ganong, Eds.: 161–190. Raven Press. New York . Google Scholar 41 Fuxe, K., K. Andersson, P. Enbroth, R. A. Siegel & L. F. Agnati. 1983. Immobilization stress-induced changes in discrete hypothalamic catecholamine levels and turnover, their modulation by nicotine and relationship to neuroendocrine function. Acta Physiol. Scand. 117: 421–426. 10.1111/j.1748-1716.1983.tb00016.x CASPubMedWeb of Science®Google Scholar 42 Demarest, K. T., K. E. Moore & G. D. Riegle. 1985. Acute restraint stress decreases dopamine synthesis and turnover in the median eminence: A model for the study of the inhibitory neuronal influences on tuberoinfundibular dopaminergic neurons. Neuroendocrinology 41: 437–444. 10.1159/000124215 CASPubMedWeb of Science®Google Scholar 43 Demarest, K. T., K. E. Moore & G. D. Riegle. 1985. Acute restraint stress decreases tuberoinfundibular dopaminergic neuronal activity: Evidence for a differential response in male versus female rats. Neuroendocrinology 41: 504–510. 10.1159/000124227 CASPubMedWeb of Science®Google Scholar 44 Cassens, G., M. Roffman, A. Kuruc, P. J. Orsulak & J. J. Schd.dkraut. 1980. Alterations in brain norepinephrine metabolism induced by environmental stimuli previously paired with inescapable shock. Science 209: 1138–1140. 10.1126/science.7403874 CASPubMedWeb of Science®Google Scholar 45 Ilmori, K., M. Tanaka, Y. Kohno, Y. Ida, R. Nakagawa, Y. Hoaki, A. Tsuda & N. Nagasaki. 1982. Psychological stress enhances noradrenaline turnover in specific brain regions in rats. Pharmacol. Biochem. Behav. 16: 637–640. 10.1016/0091-3057(82)90429-4 PubMedWeb of Science®Google Scholar 46 Tassin, J. P., D. Herve, G. Blanc & J. Glowinski. 1980. Differential effects of a two-minute open-field session on dopamine utilization in the frontal cortices of BALB/c and C57 BL/6 mice. Neurosci. Lett. 17: 67–71. 10.1016/0304-3940(80)90063-4 CASPubMedWeb of Science®Google Scholar 47 Smith, E. M., W. J. Meyer & J. E. Blalock. 1982. Virus-induced corticosterone in hypophysectomized mice: A possible lymphoid adrenal axis. Science 218: 1311. 10.1126/science.6183748 CASPubMedWeb of Science®Google Scholar 48 Dunn, A. J., M. L. Powell, W. V. Moreshead, J. M. Gaskin & N. R. Hall. 1987. Effects of Newcastle disease virus to mice on the metabolism of cerebral biogenic amines, plasma corticosterone, and lymphocyte proliferation. Brain, Behav. Immun. 1: 216–230. 10.1016/0889-1591(87)90024-9 CASPubMedGoogle Scholar 49 Dinarello, C. A. 1984. Interleukin-1. Rev. Infect. Dis. 6: 51–95. 10.1093/clinids/6.1.51 CASPubMedWeb of Science®Google Scholar 50 Dunn A. J. 1988. Stress-related changes in cerebral catecholamine and indoleamine metabolism: Lack of effect of adrenalectomy and corticosterone. J. Neurochem. In press. 10.1111/j.1471-4159.1988.tb01053.x PubMedWeb of Science®Google Scholar 51 Dunn, A. J. & C. W. Berridge. 1987. Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol. Biochem. Behav. 27: 685–691. 10.1016/0091-3057(87)90195-X CASPubMedWeb of Science®Google Scholar 52 Brown, M. R. & L. A. Fisher. 1985. Corticotropin-releasing factor: Effects on the autonomic nervous system and visceral systems. Fed. Proc., Fed. Am. Soc. Exp. Biol. 44: 243–248. CASPubMedWeb of Science®Google Scholar 53 Kurosawa, M., A. Sato, R. S. Swenson & Y. Takahashi. 1986. Sympatho-adrenal medullary functions in response to intracerebroventricularly injected corticotropin-releasing factor in anesthetized rats. Brain Res. 367: 250–257. 10.1016/0006-8993(86)91599-4 CASPubMedWeb of Science®Google Scholar 54 Britton, D. R., G. F. Koob, J. Rivter & W. Vale. 1982. Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty. Life Sci. 31: 363–367. 10.1016/0024-3205(82)90416-7 CASPubMedWeb of Science®Google Scholar 55 Morley, J. E. & A. S. Levine. 1982. Corticotrophin releasing factor, grooming and ingestive behavior. Life Sci. 31: 1459–1464. 10.1016/0024-3205(82)90007-8 CASPubMedWeb of Science®Google Scholar 56 Berridge, C. W. & A. J. Dunn. 1986. Corticotropin-releasing factor elicits naloxone-sensitive stress-like alterations in exploratory behavior in mice. Regul. Peptides 16: 83–93. 10.1016/0167-0115(86)90196-5 CASPubMedWeb of Science®Google Scholar 57 Dunn, A. J. & S. E. File. 1987. Corticotropin-releasing factor has an anxiogenic action in the social interaction test. Horm. Behav. 21: 193–202. 10.1016/0018-506X(87)90044-4 CASPubMedWeb of Science®Google Scholar 58 Iuvone, P. M. & A. J. Dunn. 1986. Tyrosine hydroxylase activation in mesocortical 3,4-dihydroxyphenylethylamine neurons following footshock. J. Neurochem. 47: 837–844. 10.1111/j.1471-4159.1986.tb00687.x CASPubMedWeb of Science®Google Scholar 59 Iuvone, P. M., A. L. Rauch, P. B. Marshburn, D. B. Glass & N. H. Neff. 1982. Activation of retinal tyrosine hydroxylase in vitro by cyclic AMP-dependent protein kinase: Characterization and comparison to activation in vivo by photic stimulation. J. Neurochem. 39: 1632–1651. 10.1111/j.1471-4159.1982.tb07997.x CASPubMedWeb of Science®Google Scholar 60 Roth, K. A., S. L. McIntire, R. G. Lorenz & J. D. Barchas. 1982. Hypothalamic catecholamine changes under acute stress occur independently of nicotinic stimulation. Neurosci. Lett. 28: 47–50. 10.1016/0304-3940(82)90206-3 CASPubMedWeb of Science®Google Scholar 61 Ikeda, M., Y. Hirata, K. Fujtta, M. Shinzato, H. Takahashi, S. Yagyu & T. Nagatsu. 1984. Effects of stress on release of dopamine and serotonin in the striatum of spontaneously hypertensive rats: An in vivo voltammetry study. Neurochem. Int. 6: 509–512. 10.1016/0197-0186(84)90122-0 CASPubMedWeb of Science®Google Scholar 62 Ikeda, M. & T. Nagatsu. 1985. Effect of short-term swimming stress and diazepam on 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) levels in the caudate nucleus: An in vivo voltammetric study. Naunyn-Schmiedeberg's Arch. Pharmacol. 331: 23–26. 10.1007/BF00498848 CASPubMedWeb of Science®Google Scholar 63 Bannon, M. J., R. A. Michaud & R. H. Roth. 1981. Mesocortical dopamine neurons: Lack of autoreceptors modulating dopamine synthesis. Mol. Pharmacol. 19: 270–275. CASPubMedWeb of Science®Google Scholar 64 Talmaciu, R. K., I. S. Hoffmann & L. X. Cubeddu. 1986. Dopamine autoreceptors modulate dopamine release from the prefrontal cortex. J. Neurochem. 47: 865–870. 10.1111/j.1471-4159.1986.tb00691.x CASPubMedWeb of Science®Google Scholar Citing Literature Volume537, Issue1The Mesocorticolimbic Dopamine SystemOctober 1988Pages 188-205 ReferencesRelatedInformation
Referência(s)