A Connection Problem for Second Order Linear Differential Equations with Two Irregular Singular Points
1976; Society for Industrial and Applied Mathematics; Volume: 7; Issue: 2 Linguagem: Inglês
10.1137/0507013
ISSN1095-7154
Autores Tópico(s)Spectral Theory in Mathematical Physics
ResumoNext article A Connection Problem for Second Order Linear Differential Equations with Two Irregular Singular PointsFriedrich NaundorfFriedrich Naundorfhttps://doi.org/10.1137/0507013PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractUsing Heaviside’s exponential series, a power series solution of the differential equation is split into formal solutions with known asymptotic expansions.[1] M. Abramowitz and , I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965 Google Scholar[2] E. W. Barnes, On functions defined by simple types of hypergeometric series, Trans. Cambridge Philos. Soc., 20 (1906), 253–279 Google Scholar[3] Ludwig Bieberbach, Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt, Zweite umgearbeitete und erweiterte Auflage. Die Grundlehren der Mathematischen Wissenschaften, Band 66, Springer - Verlag, Berlin , 1965xi+389 MR0176133 CrossrefGoogle Scholar[4] Wolfgang Bühring, Schrödinger equation with inverse fourth-power potential, a differential equation with two irregular singular points, J. Mathematical Phys., 15 (1974), 1451–1459 MR0347267 0289.34008 CrossrefISIGoogle Scholar[5] Artur Erdélyi, Über die Integration der Mathieuschen Differentialgleichung durch Laplacesche Integrale, Math. Z., 41 (1936), 653–664 MR1545645 CrossrefGoogle Scholar[6] S. Fubini and , R. Stroffolini, A new approach to scattering by singular potentials, Nuovo Cimento (10), 37 (1965), 1812–1816 MR0193937 0151.44501 CrossrefISIGoogle Scholar[7] Walter Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev., 9 (1967), 24–82 10.1137/1009002 MR0213062 0168.15004 LinkISIGoogle Scholar[8] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949xvi+396 MR0030620 0032.05801 Google Scholar[9] Ludwig Hopf, Fortsetzungsrelationen bei den Lösungen gewöhnlicher linearer Differentialgleichungen, Math. Ann., 111 (1935), 678–712 10.1007/BF01472247 MR1513022 0012.25602 CrossrefGoogle Scholar[10] L. W. Kantorowitsch and , W. I. Krylow, Näherungsmethoden der höheren Analysis, VEB deutscher Verlag der Wissenschaften, Berlin, 1956xi+611 MR0079124 0083.35205 Google Scholar[11] Hans-Wilhelm Knobloch, Zusammenhänge zwischen konvergenten und asymptotischen Entwicklungen bei Lösungen linearer Differentialsysteme vom Range eins, Math. Ann., 134 (1958), 260–288 10.1007/BF01343212 MR0095308 0089.29202 CrossrefISIGoogle Scholar[12] Mitsuhiko Kohno, A two point connection problem for n-th order single linear ordinary differential equations with an irregular singular point of rank two, Japan J. Math., 40 (1971), 11–62 MR0310329 0293.34008 CrossrefGoogle Scholar[13] Mitsuhiko Kohno, Stokes phenomenon for general linear ordinary differential equations with two singular pointsJapan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto, 1971), Springer, Berlin, 1971, 310–314. Lecture Notes in Math., Vol. 243 MR0404735 0229.34004 CrossrefGoogle Scholar[14] Mitsuhiko Kohno, A two point connection problem for general linear ordinary differential equations, Hiroshima Math. J., 4 (1974), 293–338 MR0372354 0347.34003 CrossrefGoogle Scholar[15] Philip M. Morse and , Herman Feshbach, Methods of theoretical physics. 2 volumes, McGraw-Hill Book Co., Inc., New York, 1953xxii+pp. 1–997 + xl; xviii+pp. 999–1978 MR0059774 0051.40603 Google Scholar[16] F. Naundorf, Masters Thesis, Globale Lösungen von gewöhnlichen linearen Differential gleichungen mit zwei stark singulären Stellen, Thesis, University of Heidelberg, 1974 Google Scholar[17] F. W. J. Olver, On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 225–243 MR0185350 0173.33901 LinkGoogle Scholar[18] F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974xvi+572 MR0435697 0303.41035 Google Scholar[19] F. W. J. Olver and , F. Stenger, Error bounds for asymptotic solutions of second-order differential equations having an irregular singularity of arbitrary rank, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 244–249 MR0185351 0173.34001 LinkGoogle Scholar[20] Oskar Perron, Über Summengleichungen und Poincarésche Differenzengleichungen, Math. Ann., 84 (1921), 1–15 10.1007/BF01458689 MR1512016 CrossrefGoogle Scholar[21] Oskar Perron, Über lineare Differenzengleichungen und eine Anwendung auf lineare Differentialgleichungen mit Polynomkoeffizienten, Math. Z, 72 (1959/1960), 16–24 10.1007/BF01162933 MR0110902 0087.08702 CrossrefGoogle Scholar[22] Axel Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 10 (1973), 674–689 10.1137/0710059 MR0329231 0261.65032 LinkISIGoogle Scholar[23] Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965ix+362 MR0203188 0133.35301 Google Scholar[24] E. T. Whittaker and , G. H. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, England, 1969 Google Scholar Next article FiguresRelatedReferencesCited byDetails Sextic anharmonic oscillators and Heun differential equations20 July 2022 | The European Physical Journal Plus, Vol. 137, No. 7 Cross Ref A new approach for the study of limit cyclesJournal of Differential Equations, Vol. 269, No. 7 Cross Ref Global solutions of the biconfluent Heun equation7 July 2015 | Numerical Algorithms, Vol. 71, No. 4 Cross Ref Scattering by infinitely rising one-dimensional potentialsAnnals of Physics, Vol. 363 Cross Ref Global solution of the cubic oscillator30 September 2014 | Journal of Physics A: Mathematical and Theoretical, Vol. 47, No. 41 Cross Ref Spiked oscillators: exact solution4 August 2010 | Journal of Physics A: Mathematical and Theoretical, Vol. 43, No. 38 Cross Ref An algorithm to obtain global solutions of the double confluent Heun equation14 May 2008 | Numerical Algorithms, Vol. 49, No. 1-4 Cross Ref Connection factors in the Schrödinger equation with a polynomial potentialJournal of Computational and Applied Mathematics, Vol. 207, No. 2 Cross Ref Quantum anharmonic oscillators: a new approach22 March 2005 | Journal of Physics A: Mathematical and General, Vol. 38, No. 14 Cross Ref Bound states and resonances in sombrero potentialsPhysics Letters A, Vol. 286, No. 6 Cross Ref Second-order linear differential equations with two irregular singular points of rank three: the characteristic exponentJournal of Computational and Applied Mathematics, Vol. 118, No. 1-2 Cross Ref Bound states and “resonances” in quantum anharmonic oscillatorsPhysics Letters A, Vol. 270, No. 1-2 Cross Ref On the Central Connection Problem for the Double Confluent Heun Equation19 November 2010 | Mathematische Nachrichten, Vol. 195, No. 1 Cross Ref On the central connection problem for equations with an irregular singular point of a single levelJournal of Dynamical and Control Systems, Vol. 3, No. 1 Cross Ref A new approach to the spherical Stark problem in hydrogenPhysics Letters A, Vol. 219, No. 3-4 Cross Ref Ein Verfahren zur Lösung des Zusammenhangproblems bei linearen Differentialgleichungen zweiter Ordnung mit mehreren singulären StellenZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 59, No. 6 Cross Ref A method for computing scattering phase shifts and eigenvalues of the Schrödinger equation with singular potentialsJournal of Mathematical Physics, Vol. 19, No. 6 Cross Ref Ein Verfahren zur Berechnung der charakteristischen Exponenten von linearen Differentialgleichungen zweiter Ordnung mit zwei stark singulären StellenZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 57, No. 1 Cross Ref Volume 7, Issue 2| 1976SIAM Journal on Mathematical Analysis History Submitted:30 July 1974Published online:17 February 2012 InformationCopyright © 1976 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0507013Article page range:pp. 157-175ISSN (print):0036-1410ISSN (online):1095-7154Publisher:Society for Industrial and Applied Mathematics
Referência(s)