Role of a Novel K Ca Opener in Regulating K + Channels of Hypoxic Human Pulmonary Vascular Cells
1999; American Thoracic Society; Volume: 20; Issue: 4 Linguagem: Inglês
10.1165/ajrcmb.20.4.3390
ISSN1535-4989
AutoresWei Peng, John R. Hoidal, I. S. Farrukh,
Tópico(s)Nitric Oxide and Endothelin Effects
ResumoHypoxic pulmonary vasoconstriction (HPVC) is mediated, in part, via membrane depolarization and inhibition of K+ channels. We recently observed that the naturally occurring steroid dehydroepiandrosterone (DHEA) reversed and prevented HPVC in isolated perfused and ventilated ferret lungs. In the current study, we investigated the effects of DHEA on the major K+ channels of chronically hypoxic human pulmonary smooth-muscle cells (HPSMC). K+ channels were recorded by using the patch-clamp technique in whole-cell and single-channel configurations. Single-channel recordings were performed in inside-out and outside-out excised patches, and in intact HPSMC in cell-attached configuration. Using whole-cell current recording, chronic hypoxia decreased the high-amplitude, high-noise, and charybdotoxin-sensitive Ca2+-dependent K+ channels (KCa). DHEA reversed the effect of chronic hypoxia on KCa, but had no effect on the low-amplitude, low-noise, and 4-aminopyridine-sensitive delayed rectifying K+ channels. In the cell-attached configuration, chronic hypoxia caused a decrease in KCa sensitivity to membrane potential (Em). DHEA reversed the effect of hypoxia on KCa sensitivity to Em and caused a mean of 40-mV left shift in voltage-dependent activation of KCa. DHEA increased KCa activation from both sides of membrane patches of hypoxic HPSMC via a cyclic adenosine monophosphate- and cyclic guanosine monophosphate-independent pathway. We concluded that DHEA is a novel KCa opener of the human pulmonary vasculature.
Referência(s)