Artigo Acesso aberto Revisado por pares

Prostate carcinoma knowledge, attitudes, and screening behavior among African-American men in Central Harlem, New York City

2001; Wiley; Volume: 91; Issue: 1 Linguagem: Inglês

10.1002/1097-0142(20010101)91

ISSN

1097-0142

Autores

Alfred Ashford, Steven M. Albert, Gerald Hoke, Linda F. Cushman, Daniel S. Miller, Mary T. Bassett,

Tópico(s)

Prostate Cancer Treatment and Research

Resumo

CancerVolume 91, Issue 1 p. 164-172 Original ArticleFree Access Prostate carcinoma knowledge, attitudes, and screening behavior among African-American men in Central Harlem, New York City † Alfred R. Ashford M.D., Corresponding Author Alfred R. Ashford M.D. [email protected] Harlem Prevention Center, New York, New York Departments of Medicine and Urology, Harlem Hospital Center and Columbia-Presbyterian Medical Center, New York, New York Fax: 212-939-1053Department of Medicine, Harlem Hospital Center, 135th and Lenox Avenue, New York, NY 10037===Search for more papers by this authorSteven M. Albert Ph.D., Steven M. Albert Ph.D. School of Public Health and Gertrude H. Sergievsky Center, Columbia University, New York, New YorkSearch for more papers by this authorGerald Hoke M.D., Gerald Hoke M.D. Harlem Prevention Center, New York, New York Departments of Medicine and Urology, Harlem Hospital Center and Columbia-Presbyterian Medical Center, New York, New YorkSearch for more papers by this authorLinda F. Cushman Ph.D., Linda F. Cushman Ph.D. Harlem Prevention Center, New York, New York School of Public Health and Gertrude H. Sergievsky Center, Columbia University, New York, New YorkSearch for more papers by this authorDaniel S. Miller M.D., Daniel S. Miller M.D. Centers for Disease Control and Prevention, Chamblee, GeorgiaSearch for more papers by this authorMary Bassett M.D., Mary Bassett M.D. Harlem Prevention Center, New York, New York Departments of Medicine and Urology, Harlem Hospital Center and Columbia-Presbyterian Medical Center, New York, New York School of Public Health and Gertrude H. Sergievsky Center, Columbia University, New York, New YorkSearch for more papers by this author Alfred R. Ashford M.D., Corresponding Author Alfred R. Ashford M.D. [email protected] Harlem Prevention Center, New York, New York Departments of Medicine and Urology, Harlem Hospital Center and Columbia-Presbyterian Medical Center, New York, New York Fax: 212-939-1053Department of Medicine, Harlem Hospital Center, 135th and Lenox Avenue, New York, NY 10037===Search for more papers by this authorSteven M. Albert Ph.D., Steven M. Albert Ph.D. School of Public Health and Gertrude H. Sergievsky Center, Columbia University, New York, New YorkSearch for more papers by this authorGerald Hoke M.D., Gerald Hoke M.D. Harlem Prevention Center, New York, New York Departments of Medicine and Urology, Harlem Hospital Center and Columbia-Presbyterian Medical Center, New York, New YorkSearch for more papers by this authorLinda F. Cushman Ph.D., Linda F. Cushman Ph.D. Harlem Prevention Center, New York, New York School of Public Health and Gertrude H. Sergievsky Center, Columbia University, New York, New YorkSearch for more papers by this authorDaniel S. Miller M.D., Daniel S. Miller M.D. Centers for Disease Control and Prevention, Chamblee, GeorgiaSearch for more papers by this authorMary Bassett M.D., Mary Bassett M.D. Harlem Prevention Center, New York, New York Departments of Medicine and Urology, Harlem Hospital Center and Columbia-Presbyterian Medical Center, New York, New York School of Public Health and Gertrude H. Sergievsky Center, Columbia University, New York, New YorkSearch for more papers by this author First published: 04 January 2001 https://doi.org/10.1002/1097-0142(20010101)91:1 3.0.CO;2-ACitations: 21 † This article is a US Government work and, as such, is in the public domain in the United States of America. AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract BACKGROUND Although the benefits of prostate carcinoma screening in reducing mortality rates have not been proven or shown to be cost-effective, screening, particularly using prostate specific antigen (PSA) tests, is widespread. A better understanding of screening behavior, knowledge of prostate carcinoma risk, and attitudes toward screening among men at high risk, such as African-American men, would be valuable. METHODS A prevalence survey was conducted using 2 samples of African-American men, aged 50–74 years: a clinic sample drawn from all clinics in Central Harlem (n = 404) and a random-digit dial sample from the same geographic region (n = 319). The prevalence of self-reported PSA screening was estimated using a cognitive survey methodology based on the internal consistency of answers to four different questions. Prevalence estimates were adjusted to take into account the high proportion of nontelephone residences. RESULTS The clinic sample, representing a poorer, more ill population (as determined by MOS Physical Function Scores, was less likely to report PSA screening than the community sample (11.1% in clinic sample vs. 25.5% in community). The prevalence of PSA testing in Central Harlem overall in this age group by using two different techniques was estimated to be 24%. In multiple logistic models, self-reported PSA screening was associated with age, education, favorable attitudes toward screening, and knowing someone who had prostate carcinoma. However, the association between these factors and the likelihood of self-reported PSA screening differed between clinic and community samples. CONCLUSIONS The prevalence of self-reported PSA screening in Central Harlem was lower than that reported for other populations. These findings may be useful in the design of health education campaigns and for counseling innercity, low-income African-American patients appropriately about the disease. Cancer 2001;91:164–72. Published 2001 American Cancer Society. Prostate carcinoma is the second leading cause of cancer deaths among American men.1 The American Cancer Society estimated that 184,500 new cases would be diagnosed in 1998.2 Prostate carcinoma morbidity and mortality rates are significantly elevated among African-American men. In 1994, the incidence rate for whites was 185.3 per 100,000, whereas for African-American men it was 234.4; also, the lifetime risk of prostate carcinoma mortality is twice as high among African-American men as compared with whites.3 African-American men are less likely to be screened for prostate carcinoma than whites and more likely to have advanced disease at the time of diagnosis.4-9 Prostate carcinoma screening is controversial. Scientific and medical organizations differ regarding recommendations for screening and detection. Although the benefits of prostate carcinoma screening in reducing mortality rates have not been proven or shown to be cost-effective,10-17 screening, particularly using prostate specific antigen (PSA), is widespread. A better understanding of screening behavior, knowledge of prostate carcinoma risk, and attitudes toward screening among men at high risk, such as African-American men, would be valuable. Because African-American men are at such high risk for prostate carcinoma, early efforts must be made to identify the knowledge, attitudes, and beliefs of African-American men now to develop and target appropriate health messages. This is especially important in preparation for any additional developments in the control of prostate carcinoma. Obtaining information about the knowledge, attitudes, and beliefs of African-American men regarding prostate carcinoma also may help in understanding the low rates of participation of African-American men in prevention trials. However, few population-based surveys of PSA screening in minority populations are available. Most studies have relied on convenience samples and hence do not offer unbiased estimates of the prevalence of screening. This research examines knowledge of prostate carcinoma risk, attitudes toward prostate carcinoma screening, and screening behavior in a cohort of African-American men residing in Central Harlem, New York City. We examine the prevalence of self-reported PSA screening, attitudes toward prostate carcinoma screening, and accuracy of knowledge regarding prostate carcinoma risk. We assess the reliability of self-reported PSA screening by examining the consistency of self-reports in light of answers to a series of related questions built into the Harlem Men's Health Cohort survey. We concentrate on PSA screening because virtually all men reporting having a PSA test also reported having a digital rectal examination for prostate carcinoma screening (see below). METHODS AND SAMPLE Eligibility criteria for inclusion in the Harlem Men's Health Cohort required residence in the 11 zip code zones that define Central Harlem, age 50–74 years, fluency in English, no reported treatment for cancer in the prior year, and no reported lifetime diagnosis or treatment for prostate carcinoma. The intent was to enroll a cohort of men presumably at risk for prostate carcinoma but without direct experience of the disease. The men ultimately will be observed in prospective studies. Aware of the high prevalence of nontelephone households in Harlem (23.9% in the recent Harlem Health Survey; D McLean, personal communication), we enrolled men into the study from clinic settings to represent men without telephones (of whom 17.5% reported no telephone). A second sample of community-based men was identified using a random-digit dial (RDD) telephone methods. Men were enrolled into the study from February 1995 to June 1996. The study was reviewed and approved by the New York State Department of Health and Harlem Hospital Center institutional review boards. The clinic-based sample of 404 men was recruited from general medical and urologic clinics in Central Harlem, covering all providers in this geographic area. These included medical and medical subspecialty clinics at Harlem Hospital Center, North General Hospital, Robeson Clinic, and the Renaissance Health Care Network, which consists of five community-based ambulatory care centers. Recruitment from urology clinics contributed less than 5% of the clinic sample. Clinic patients were recruited by trained project interviewers based at each site who approached every adult male present at selected clinic sessions. Clinic recruitment sessions were chosen to capture a representative volume of service use. If subjects met study criteria, informed consent was obtained, and interviews took place in a private, adjoining room. For the 10% of patients who preferred another time or location for the interview (usually because patients had other appointments scheduled), contact information was obtained and interviews were conducted within 1–2 days, usually at patient homes. The 319 men in the community sample were enrolled using a RDD telephone approach conducted by a private research firm. The firm called numbers within all telephone exchanges in the catchment area to identify potential respondents and then forwarded names to the research team, which followed up by telephone to assess study eligibility. If respondents met eligibility criteria and consented to participate, an in-person interview was scheduled and most often was completed in the man's home. Project interviewers were all African-American research assistants who received extensive training. Each was observed conducting interviews and monitored by a field coordinator. In addition, a 10% random sample of respondents was contacted again by the project coordinator and interviewed on a select set of measures to ensure reliability of data. The in-person interview involved a structured 60–90-minute assessment of respondent demographics (e.g., age, education, living conditions, income), medical access (e.g., insurance coverage, types of care providers, number of physician visits during the prior year), and physical and mental health, in addition to an extensive set of measures assessing prostate screening attitudes, knowledge of prostate carcinoma risk, and screening behaviors. Self-report health measures included the Medical Outcomes Study (MOS) short form (SF)-36,18, 19 and the American Urological Association (AUA) urinary symptom scale for benign prostatic hypertrophy.20-22 Although we are unaware of studies that have explicitly validated the measures in African-American populations, these are commonly used measures that have shown value in a variety of population studies. Attitudes toward prostate carcinoma screening and knowledge of prostate carcinoma risk were assessed using 12 core questions developed in a joint effort involving Harlem Hospital, the New York Department of Health, and Louisiana State University as part of a prostate carcinoma demonstration project funded by the Centers for Disease Control and Prevention. These questions were developed primarily for public health surveillance and were based on the health belief model.23 In accord with the model, "perceived susceptibility" to prostate carcinoma was assessed in terms of knowledge about the risk of the disease; "perceived personal benefit" from screening was assessed in terms of favorable attitudes toward the efficacy of screening to detect prostate carcinoma and confidence that early treatment is warranted. Questions used to assess attitudes toward prostate carcinoma screening and knowledge of prostate carcinoma risk were extensively pretested in a series of focus groups. Analyses Measures Composite measures were constructed for items assessing attitudes toward prostate carcinoma screening and knowledge of prostate carcinoma risk by using separate factor analyses (varimax rotation, selecting first principal component) for a priori defined sets of variables. Eight items formed a reliable prostate carcinoma screening attitude scale (internal consistency Cronbach alpha, 0.77). The scale included items with both positive and negative valence; items were recoded accordingly to form a scale indicating more favorable attitude toward cancer screening. Subject responses ranged from strongly agree (1) to strongly disagree (5); these were summed and then divided by the number of items to give a scale with a range of 1–5. Items assessed topics such as whether men would want to know if they have prostate carcinoma and whether they would avoid screening for fear a physician may find prostate carcinoma (see Table 2 below). Because the attitude measure was newly designed for this research and because no guidelines were available for interpreting this composite, screening attitude scores were divided into tertiles based on the distribution of responses to scale items. We also conducted exploratory factor analyses of the items (principal components extraction, with varimax rotation). Two factors emerged, which together accounted for greater than 50% of the variance in item responses. The first factor identified attitudes associated with the perceived benefit of screening: "Screening gives peace of mind," "People important to me would be reassured if I were screened," "I want tests early to find out about prostate cancer," "Finding prostate cancer is worth the cost of screening," and "I would want to know if I had prostate cancer as early as possible." The second factor identified attitudes associated with fear of the disease, denial of risk, and threat related to a positive test: "Leave well enough alone: better not to know if you have prostate cancer", "I'm healthy: do not feel a need to be screened," and "I don't want tests: I'm afraid MD might find prostate cancer". This classification is in accord with the health belief model's broad distinction between the perceived benefit and threat of a health behavior.23 Knowledge of prostate carcinoma risk was measured in terms of the number of correct responses to 4 items: that men older than age 50 years are more likely to develop prostate carcinoma than younger men, that 1 in 10 men are likely to develop prostate carcinoma, that a man is more likely to develop prostate carcinoma if his father had it, and that African-American men are at higher risk than whites. A simple sum of correct answers was calculated, such that knowledge scores ranged from 0 to 4. For analytic purposes, knowledge scale scores were divided into three categories: none correct, one correct, and more than one correct. From prior clinical experience, we were aware that elicitation of PSA screening status is complex. The simple, direct question included in our survey—"Have you ever had a PSA blood test for prostate cancer?"—elicited a high number of "unsure" responses (n = 117, or 16.2% of the total sample). To explore men's responses to this question in more detail, we relied on cognitive survey methodology,24 using the consistency of men's responses to four related items to check, and, if warranted, reassign men's responses on this outcome measure. The four items included the following: 1) "Have you ever heard of prostate cancer?" 2) "Have you ever heard of any tests for prostate cancer?" 3) "Have you ever been tested for prostate cancer?" 4) "Have you ever had a PSA blood test for prostate cancer?" Use of the four items is superior to the single item because it allowed us to identify men who inconsistently answered items, for example, those who asserted that they had been tested for prostate carcinoma while earlier reporting that they were unaware of such tests, or who stated they had never heard of prostate carcinoma but then said that they had been screened. While recognizing the limitations of this approach (see "Discussion,"), we used this procedure to adjust self-reported prevalence of PSA screening in two ways. First, it allowed us to identify inconsistent responders who likely reported PSA screening out of social desirability in the interview context or who simply were unlikely to be reliable in their self-reports. Second, the procedure allowed us to examine more carefully men who answered the four questions consistently but were uncertain if they had been screened. For assessing correlates of PSA screening, we introduced additional measures that might affect screening behaviors. One set of measures involved genitourinary function, which we included because little information on genitourinary function is available for older, African-American men and also because we wished to examine whether genitourinary symptoms might be associated with prostate carcinoma screening. We used the AUA urinary symptoms scale.22 Scores on the AUA scale were categorized according to published guidelines: scores of 0–7 indicate no or mild symptoms, 8–19 moderate symptoms, and 20–35 severe symptoms. A second set of measures assessed overall functioning and well-being. We used the MOS SF-36 and computed summary scales according to suggested guidelines; these range from 0 to 100, with 100 considered optimal health in each domain.19 The SF-36 is useful for identifying the effects of medical conditions that might affect cancer screening behavior (i.e., severe physical debility). These measures, along with sociodemographic indicators, were included in multiple logistic models as covariates that might be related to PSA screening. Analyses As mentioned earlier, the Harlem Men's Health Cohort includes two different sample populations, a clinic sample and RDD community sample. The two samples were ascertained in settings likely to be correlated with the PSA screening outcome (i.e., clinic men reported less income and education, as well as worse health and less access to regular medical providers). Hence, all analyses were stratified by ascertainment site (clinic or community). Prevalence estimates were calculated separately for clinic and community men, and significance tests between the two samples are not presented. Multiple logistic regression models were constructed to examine correlates of the dichotomous PSA screening outcome separately in the clinic and community samples. All potential correlates were entered, and those not meeting entry criteria (P > 0.05) were deleted from models. Interaction terms of specific interest, such as the interaction between screening attitudes and knowledge regarding prostate carcinoma risk, were introduced into logistic models. Odds ratios and 95% confidence intervals were calculated. To estimate the prevalence of PSA screening in Central Harlem, we adjusted self-reported prevalence in the RDD survey group according to the prevalence of nontelephone residences (as reported in the Harlem Household Survey (D. McLean, personal communication) in two ways: using the difference in the prevalence of reported PSA screening between clinic patients with and without telephones and using the ratio between these two prevalence estimates. RESULTS The response rate for the clinic sample was quite high; less than 5% of eligible men declined to participate. In the community sample, participation was lower. Interviews were completed by approximately 65% of the men referred to the research team by the private survey firm. The primary reason for nonresponse in this group was inability to locate respondents who had responded to a first call from the survey firm commissioned to identify respondents (20%), and further discovery that referred men were not, in fact, residents at these addresses and were accordingly ineligible (10%). An additional 5% refused when contacted by the research team. Sociodemographic Profile The sociodemographic characteristics of participants in the Harlem Men's Health Cohort are shown in Table 1. The clinic and community samples show important differences. The community sample was more highly educated (27.8% with postsecondary education, compared with 14.9%), less likely to rely on Medicaid for medical insurance (31.2% vs. 61.2%), more likely to be employed (22.9% vs. 13.3%), and less impoverished (26.5% with incomes greater than $20,000, compared with 9.6%). Table 1. Sociodemographic Characteristics: Harlem Men's Health Cohort, Clinic and Community Samples Characteristic Clinic (n = 404) Community (n = 319) Age (yrs [standard deviation]) 60.3 (±7.21) 61.4 (±7.21) Education (%) Low (0–8 yrs) 27.5 22.5 Mid (9–12 yrs) 57.6 49.7 High (13+ yrs) 14.9 27.8 Income (%) < $7000 55.1 30.7 $7000–$13,000 28.0 33.7 $13,001–$20,000 7.3 9.1 $20,001+ 9.6 26.5 Medical insurance coverage (%)a Medicaid 61.2 31.3 Medicare 36.2 37.3 Other insurance 14.4 42.3 Employment (%) Currently employed 13.4 22.9 Unemployed 49.0 28.2 Retired 37.6 48.9 Current marital status (%) Married/cohabiting 27.2 33.6 Separated/divorced 35.2 39.2 Widowed 16.1 8.5 Never married 21.5 18.8 Note: May not add to 100% because of multiple responses or rounding. a Men may have more than one insurance source. Health Status of the Cohort The self-reported health of cohort respondents showed important differences between the clinic and community samples. In the community sample, 80.6% of the men had no or mild urinary symptoms compared with only 62.7% in the clinic sample; 1.9% of community men had severe symptoms compared with 5.5% among clinic men. The mean MOS physical function score for community men was 80.0% compared with 61.1% among clinic men. 62.0% of the clinic sample rated their health as fair or poor as compared with 43.4% of the community sample. Indicators of Screening Behaviors, Prostate Carcinoma Risk, and Attitudes toward Prostate Carcinoma Screening Respondents in the clinic and community samples answered questions regarding screening behaviors (and awareness of screening), knowledge of prostate carcinoma risk, and attitudes toward screening similarly (Table 2). In both samples, approximately half of the men reported they were aware that there were tests to screen for prostate carcinoma. A high proportion of men in both samples were favorable toward screening, but knowledge about prostate carcinoma risk was low. Table 2. Prostate Carcinoma Knowledge and Attitudes Toward Screening: Harlem Men's Health Cohort: Clinic and Community Samples Study question Clinic Community Awareness of prostate carcinoma and screening (%) Ever heard of prostate carcinoma 82 91 Ever heard of tests to screen for prostate carcinoma 47 59 Ever tested for prostate carcinoma 42 54 Ever had PSA testa 8 17 Knowledge items (% agree)b Man is more likely to develop PCa if father had it 34 29 Men older than age 50 yrs are more likely to develop PCa 53 52 One in every 10 men will develop PCa in lifetime 38 33 African-American men are at higher risk than whites 29 30 Attitude items (% agree)b Leave well enough alone: better not to know if you have PCa 16 7 Would want tests early to find out about PCa 94 96 Doesn't want tests: afraid MD might find PCa 15 11 Finding PCa is worth cost of screening 90 93 People important to me would be reassured if I were screened for PCa 92 92 I'm healthy: do not feel need to be screened 13 10 Screening gives peace of mind 89 91 Would want to know if I had PCa as soon as possible 96 97 PSA: prostate specific antigen; PCa: prostate carcinoma a Excludes respondents reporting "unsure." b Agreement defined as "agree" or "strongly agree" in five-point Likert-type scale. Inconsistent or Uncertain Responses to Prostate Screening Questions The breakdown of the sample on the four hierarchic measures of screening used in the survey is shown in Figure 1. One hundred two men reported that they had never heard of prostate carcinoma, even though 15 of these men reported that they had or might have had a PSA test. We considered these men not to have been screened with PSA. Similarly, 255 men had heard of prostate carcinoma but had not heard of tests to screen for it; yet, 56 of these men reported that they had been screened, including several with PSA. We again did not consider these valid reports of PSA. Conversely, of 257 men who reported that they had heard of prostate carcinoma, that they were aware of tests for it, and that they had been screened for it, 49 were uncertain if they had a PSA test but were assumed to have had PSA screening. Figure 1Open in figure viewerPowerPoint Prostate cancer screening questions: Harlem Men's Health Survey. Subjects with missing data proceeded to an item not shown. In 6.7% of the total sample, a valid response to 1 or more of the 4 questions was missing. Accordingly, these men could not be assigned a PSA screening status, leaving a sample of 675 for analysis (n = 377, clinic; n = 298, community). The proportion of men who could not be assigned PSA screening status was similar between clinic and community samples (6.7% in the clinic sample, 6.6% in the community sample). With the above procedure, approximately one third of the clinic men and approximately half of the community men who said they were "unsure" of their PSA screening status were reclassified as PSA screened, and the remainder was assigned to nonscreened status. In the remainder of the sample, 18% of clinic men and 14% of community men were reclassified. Although we could not validate this reclassification against actual screening status (established, for example, through medical chart review), we were able to assess the validity of the reclassification by examining expected correlates of screening. For example, education was more strongly related to reclassified than initially reported PSA status. Self-reported PSA screening in the community sample was higher in those with 0–8 years of school (17.5%) than in those with 9–12 years (14.5%), contrary to evidence showing a strong relation between education and preventive health behaviors. In the reclassification,18.0% of the least educated and 22.1% of the more educated group were considered to have been screened. Prevalence of Self-Reported PSA Screening in Central Harlem The prevalence of PSA screening, after reclassification derived from the cognitive survey methodology, was 25.5% in the community sample and 11.1% in the clinic sample. We estimated the PSA prevalence for community men without telephones by reducing the RDD sample PSA estimate by the difference in the PSA screening prevalence estimates for clinic patients with telephones (self-reported PSA prevalence 12.4%) and without telephones (7.9%): 25.5% − (12.4% − 7.9%) = 21.0%. We then derived an estimate (24.7%) of the overall community PSA prevalence as a weighted average of the RDD prevalence (25.5%) and prevalence for men without telephones (21.0%), weighting by the proportions of households with and without telephones in the Harlem Health Survey. To see how sensitive the result was to this specific technique, we also tried an adjustment based on the ratio of prevalences (12.4%/7.9%), yielding estimates of 25.5% / (12.4%/7.9%) = 16.2% for community men without telephones and 23.6% for the community as a whole. Of those screened with PSA, 79.1% of clinic men and 86.8% of community men reported having a digital rectal exam (DRE). Digital rectal exam screening without PSA was also common in both samples: 25.1% of clinic men and 35.5% of the community men reported a DRE in the absence of a PSA test. Multiple Logistic Regression Models of PSA Screening in Central Harlem Correlates of PSA screening were examined separately for clinic and community samples (Tables 3 and 4). Potential correlates meeting model selection criteria (P < 0.05) are shown, along with soci

Referência(s)
Altmetric
PlumX