Artigo Revisado por pares

Anti‐Mitotic Recursively Enumerable Sets

1985; Wiley; Volume: 31; Issue: 29-30 Linguagem: Inglês

10.1002/malq.19850312903

ISSN

1521-3870

Autores

Klaus Ambos–Spies,

Tópico(s)

Computability, Logic, AI Algorithms

Resumo

Mathematical Logic QuarterlyVolume 31, Issue 29-30 p. 461-477 Article Anti-Mitotic Recursively Enumerable Sets Klaus Ambos-Spies, Klaus Ambos-Spies Universität Dortmund Lehrstuhl für Informatik II Postfach 500500 D-4600 Dortmund 50 Search for more papers by this author Klaus Ambos-Spies, Klaus Ambos-Spies Universität Dortmund Lehrstuhl für Informatik II Postfach 500500 D-4600 Dortmund 50 Search for more papers by this author First published: 1985 https://doi.org/10.1002/malq.19850312903Citations: 15 Added in proof: R. G. DOWNEY and L. V. WEICH independently introduced and studied anti-mitotic sets. They call them strongly atomic. Their results will appear in the Journal of Symbolic Logic. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Ambos-Spies, K., On pairs of recursively enumerable degrees. Trans. Amer. Math. Soc. 283 (1984), 507–531. 2 Ambos-Spies, K., Anti-mitotic recursively enumerable sets (preliminary version). In: Report on the 1st GTI-Workshop (L. Priese, ed.), Reihe Theoretische Informatik, Universität Paderborn, Bericht Nr. 13 (1983). 3 Ambos-Spies, K., Contiguous r.e. degrees. In: Computation and Proof Theory, Proceedings Logic Colloquium Aachen 1983, Part II (M. M. Richter et al., Eds.), Springer Lecture Notes in Mathematics 1104 (1984), pp. 1–37. 4 Ambos-Spies, K., and P. Fejer, Degree theoretic splitting properties of r.e. sets. Submitted for publication. 5 Ambos-Spies, K., Jockusch, C., Shore, R., and R. Soare, An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees. Trans. Amer. Math. Soc. 281 (1984), 109–128. 6 Fejer, P. A., The density of the nonbranching degrees. Ann. Math. Logic 24 (1983), 113–130. 7 Friedberg, R. M., Three theorems on recursive enumeration. J. Symb. Logic 23 (1958), 309–316. 8 Ingrassia, M. A., P-genericity for recursively enumerable sets. Ph.D. thesis, Univ. of Illinois at Urbana-Champaign 1981. 9 Lachlan, A. H., Lower bounds for pairs of r.e. degrees. Proc. London Math. Soc. (3) 16 (1966), 537–569. 10 Lachlan, A. H., The priority method I. This Zeitschrift 13 (1967), 1–10. 11 Lachlan, A. H., Bounding minimal pairs. J. Symb. Logic 44 (1979), 626–642. 12 Lachlan, A. H., Decomposition of recursively enumerable degrees. Proc. Amer. Math. Soc. 79 (1980), 629–634. 13 Ladner, R. E., Mitotic recursively enumerable sets. J. Symb. Logic 38 (1973), 199–211. 14 Ladner, R. E., A completely mitotic non-recursive r.e. degree. Trans. Amer. Math. Soc. 184 (1973), 479–507. 15 Ladner, R. E., and L. P. Sasso, Jr., The weak truth table degrees of recursively enumerable sets. Ann. Math. Logic 8 (1975), 429–448. 16 Lerman, M., and J. B. Remmel, The universal splitting property I. In: Logic Colloquium 80 ( D. van Dalen, ed.), North-Holland Publ. Comp., Amsterdam – New York 1982, pp. 181–207. 17 Lerman, M., and J. B. Remmel, The universal splitting property II. J. Symbolic Logic 49 (1984), 137–150. 18 Robinson, R. M., Interpolation and embedding in the recursively enumerable degrees. Annals Math. 93 (1971), 285–314. 19 Sacks, G. E., Degrees of unsolvability. Ann. Math. Studies 55, Princeton Univ. Press, Princeton 1966. 20 Shoenfield, J. R., Degrees of unsolvability. North-Holland Publ. Comp., Amsterdam 1971. 21 Soare, R. I., The infinite injury priority method. J. Symb. Logic 41 (1976), 513–530. 22 Soare, R. I., Fundamental methods for constructing recursively enumerable degrees. In: Recursion Theory: its generalizations and applications ( F. R. Drake and S. S. Wainer, eds.), Cambridge University Press, Cambridge 1980. 23 Stob, M., Wtt-degrees and T-degrees of r.e. sets. J. Symbolic Logic 48 (1983), 921–930. Citing Literature Volume31, Issue29-301985Pages 461-477 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX