Artigo Revisado por pares

Synthesis and Characterization of Verdazyl Radicals Bearing Pyridine or Pyrimidine Substituents: A New Family of Chelating Spin-Bearing Ligands

1999; American Chemical Society; Volume: 64; Issue: 24 Linguagem: Inglês

10.1021/jo991198c

ISSN

1520-6904

Autores

Christa L. Barr, P.A. Chase, Robin G. Hicks, Martin T. Lemaire, Cecilia L. Stevens,

Tópico(s)

Metal complexes synthesis and properties

Resumo

The syntheses and characterization of two new 1,5-dimethyl-6-oxoverdazyl radicals bearing 2-pyridine and 4,6-dimethyl-2-pyrimidine rings as substituents are described. The radical precursors, the corresponding 1,2,4,5-tetrazanes, were prepared by condensation of the bis(1-methylhydrazide) of carbonic acid with the appropriate aromatic aldehyde. Oxidation of 3-(4,6-dimethyl-2-pyrimidyl)-1,5-dimethyl-1,2,4,5-tetrazane 6-oxide (7) with sodium periodate afforded 1,5-dimethyl-3-(4,6-dimethyl-2-pyrimidyl)-6-oxoverdazyl (4), which could be isolated and stored without decomposition. In contrast, attempts to oxidize the analogous 3-(2-pyridyl)-1,5-dimethyl-1,2,4,5-tetrazane 6-oxide (6) with periodate produced the 1,5-dimethyl-3-(2-pyridyl)-6-oxoverdazyl (3) which could not be isolated. However, oxidation of this tetrazane with benzoquinone produced the pyridylverdazyl 3 as a 1:1 complex with hydroquinone. This complex is indefinitely stable in the solid state and provides a means of long-term storage of the pyridylverdazyl. The electronic properties of both radicals have been characterized by EPR spectroscopy, cyclic voltammetry, and MNDO calculations. The radicals have a wide electrochemical window of stability (>1.8 V), and the EPR and computational studies indicate a large spin density residing on N2 and N4.

Referência(s)