Modelling runoff and sediment transport in catchments using GIS
1998; Wiley; Volume: 12; Issue: 6 Linguagem: Inglês
10.1002/(sici)1099-1085(199805)12
ISSN1099-1085
Autores Tópico(s)Flood Risk Assessment and Management
ResumoHydrological ProcessesVolume 12, Issue 6 p. 905-922 Research Article Modelling runoff and sediment transport in catchments using GIS A. P. J. De Roo, Corresponding Author A. P. J. De Roo Department of Physical Geography, Utrecht University, PO Box 80.115, 3508TC Utrecht, The NetherlandsJoint Research Centre, Space Applications Institute, Agriculture Information Systems Unit, Ispra, TP 441, I-21020 Ispra (VA), Italy.===Search for more papers by this author A. P. J. De Roo, Corresponding Author A. P. J. De Roo Department of Physical Geography, Utrecht University, PO Box 80.115, 3508TC Utrecht, The NetherlandsJoint Research Centre, Space Applications Institute, Agriculture Information Systems Unit, Ispra, TP 441, I-21020 Ispra (VA), Italy.===Search for more papers by this author First published: 04 December 1998 https://doi.org/10.1002/(SICI)1099-1085(199805)12:6 3.0.CO;2-2Citations: 64AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The application of geographical information systems (GIS) in modelling runoff and erosion in catchments offers considerable potential. Several examples illustrate simple GIS techniques to produce erosion hazard indices or erosion estimates using USLE-type models. Existing erosion models can also be loosely coupled to a GIS, such as the ANSWERS model. Furthermore, models can be fully integrated into a GIS by embedded coupling, such as the LISEM model. However, GIS raster-based erosion models do not necessarily produce better results than much simpler and partly lumped erosion models with ‘representative elements’, although they reproduce topography in more detail. The reasons for the disappointing results of spatial models must be sought in the uncertainty involved in estimating and measuring the large number of input variables at a catchment scale. There is a need for much simpler loosely coupled or embedded GIS erosion models simulating only the dominant processes operating in the catchment. © 1998 John Wiley & Sons, Ltd. References Amaru, M., Van Dijck, S. J. E., Van Asch, Th. W. A. 1996. ‘Predicting the impact of land use change on event-based runoff in a small Mediterranean catchment’, ITC J., 1995–4, 331–336. Beasley, D. B. and Huggins, L. F. 1982. ANSWERS—User's manual. Dept. of Agr. Eng., Purdue University, West Lafayette, In. Beven, K. J. and Kirkby, M. J. 1979. ‘A physically based, variable contributing area model of basin hydrology’, Hydrol. Sci. Bui., 24, 43–69. Boardman, J., Ligneau, L., De Roo, A. P. J. and Vandaele, K. 1994. ‘Flooding of property by runoff from agricultural land in northwestern Europe’, Geomorphology, 10, 183–196. Bork, H. R. and Hensel, H. 1988. ‘Computer-aided construction of soil erosion and deposition maps’, Geol. Jahr., A104, 357–371. Burrough, P. A. 1986. Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press, Oxford. 193 pp. De Jong, S. M. 1994. ‘ An erosion model integrating remotely sensed data with GIS data: SEMMED’, Applications of Reflective Remote Sensing for Land Degradation Studies in a Mediterranean Environment, Netherlands Geographical Studies, 177. University of Utrecht, Utrecht, pp 75–94. De Roo, A. P. J. 1991. ‘The use of 137Cs as a tracer in an erosion study in South-Limburg (The Netherlands) and the influence of Chernobyl fallout’, Hydrol. Process, 5, 215–227. De Roo, A. P. J. 1993. Modelling surface runoff and soil erosion in catchments using geographical information systems; Validity and applicability of the 'ANSWERS' model in two catchments in the loess area of South Limburg (The Netherlands) and one in Devon (UK), Netherlands Geographical Studies, 157. University of Utrecht, Utrecht. 304 pp. De Roo, A. P. J. 1996. ‘ Validation problems of hydrologic and soil erosion catchment models: examples from a Dutch erosion project’, in M. G. Anderson and S. Brooks (eds), Advances in Hillslope Processes. John Wiley & Sons. pp. 669–683. De Roo, A. P. J. and Walling, D. E. 1994. ‘ Validating the 'ANSWERS' soil erosion model using 137Cs’, in R. J. Rickson (ed.), Conserving Soil Resources. European Perspectives. CAB International, Cambridge, pp. 246–263. De Roo, A. P. J., Eppink, L., Hazelhoff, L., Jessen, G., Burrough, P. A. and Schouten, C. J. 1987. ‘Onderzoek wateroverlast en bodemoerosie nabij Catsop (gem. Stein, Limburg’, De Landinrichtingsdienst, het Staatsbosbeheer, de provincie Limburg en het Waterschap Roer en Overmaas. Rijksuniversiteit Utrecht/Landbouwuniversiteit Wageningen. Roermond. 109 pp. De Roo, A. P., Hazelhoff, L. and Burrough, P. A. 1989. ‘Soil erosion modelling using 'ANSWERS' and geographical information systems’, Earth Surf. Proces. Landf., 14, 517–532. De Roo, A. P. J., Hazelhoff, L. and Heuvelink, G. B. M. 1992. ‘The use of Monte Carlo simulations to estimate the effects of spatial variability if infiltration on the output of a distributed hydrological and erosion model’, Hydrol. Process., 6, 127–143. De Roo, A. P. J., Wesseling, C. G. and Ritsema, C. J. 1996a. ‘LISEM: a single event physically based hydrological and soil erosion model for drainage basins: I. Theory, input and output’, Hydrol. Process., 10, 1107–1117. De Roo, A. P. J., Offermans, R. J. E. and Cremers, N. H. D. T. 1996b. ‘LISEM: a single event physically based hydrological and soil erosion model for drainage basins: II. Sensitivity analysis, validation and application’, Hydrol. Process., 10, 1119–1126. Desmet, P. J. J. and Govers, G. 1995. ‘GIS-based simulation of erosion and deposition patterns in an agricultural landscape: a comparison of model results with soil map information’, Catena, 25, 389–401. Desmet, P. J. J. and Govers, G. 1996. ‘A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units’, J. Soil Wat. Conserv., 515, 427–433. Desmet, P. J. J., Poesen, J. and Govers, G. 1997. ‘Relative importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies’, Catena, in press. Dräyer, D. 1996. ‘GIS-gestützte Bodenerosionsmodellierung im Nordwestschweizerischen Tafej Jura—Erosionsschadenskartierungen und Modellergebnisse’, Basler Beitrage zur Physiographic: Physiogeographica, Vol. 22. 234 pp. Ferri, V. and Minacapilli, M. 1995. ‘Sediment delivery processes at the basin scale’, Hydrol. Sci. J., 40, 703–717. Fröhlich, J., Dräyer, D. and Huber, M. 1994. ‘GIS-Methoden in der landschaftsökologischen Raumbewertung mit einem Beispiel zur Bestimmung der Bodenerosionsgefährdung’, Die Erde, 125, 1–13. Govers, G., Quine, T. A., and Walling, D. E. 1993. ‘ The effects of water erosion and tillage movement on hillslope profile development: a comparison of field observations and model results’, in S. Wicherek (ed) Farm Land Erosion in Temperate Plains and Hills. Elsevier, Amsterdam, pp. 285–300. Jetten, V., Henkens, E. J., De Jong, S. M. 1988. The Universal Soil Loss Equation. Version 1.0, release 1.0, distributed. Department of Physical Geography, Utrecht University, The Netherlands. Jetten, V., De Roo, A. P. J., and Lorentz, S. 1998. Validating soil erosion models at the catchment scale. CATENA. In press. Ludwig, B., Daroussin, J., King, D. and Souchere, V. 1996. ‘Using GIS to predict concentrated flow erosion in cultivated catchments’, IAHS Publ., 235, 429–436. Mitchell, J. K., Engel, B. A., Srinivason, R. and Wang, S. S. Y. 1992. ‘Validation of AGNPS for small watersheds using an integrated AGNPS/GIS system’, Paper no. 92–2532. ASAE. 14 pp. Moore, I. D., Gessler, P. E., Nielsen, G. A. and Peterson, G. A. 1992. ‘ Terrain analysis for soil-specific crop management’, in Soil Specific Crop Management: A Workshop on Research and Development Issues. Minnesota Extension Service, University of Minnesota (Agriculture), Minneapolis. 23 pp. Moore, I. D., Turner, A. K., Wilson, J. P., Jenson, S. K. and Band, L. E. 1993. ‘GIS and land—surface—subsurface process modelling’, in Goodchild, M. F., Parks, B. O. and Steyaert, L. T. (eds), Environmental modelling with GIS. pp. 213–230. Morgan, R. P. C., Morgan, D. D. V. and Finney, H. J. 1984. ‘A predictive model for the assessment of soil erosion risk’, J. Agric. Engng. Res., 30, 235–253. Quine, T. A., Desmet, P. J. J., Govers, G., Vandaele, K., and Walling, D. E. 1994. ‘A comparison of the roles of tillage and water erosion in landform development and sediment export on agricultural land near Leuven, Belgium’, IAHS Publ., 224, 77–86. Schmidt, J. 1991. ‘A mathematical model to simulate rainfall erosion’, Catena, 19 (Suppl.), 101–109. Van Hees, J. C., Henkens, E. J., De Jong, S. M. and De Roo, A. P. J. 1987. ‘A land evaluation and soil erosion study in the Ardeche’, Msc Thesis. Internal Report, Utrecht University. Vertessy, R. A., Wilson, C. J., Silburn, D. M., Connolly, R. D. and Ciesiolka, C. A. 1990. ‘Predicting erosion hazard areas using digital terrain analysis’, Proceedings IAHS International Symposium on Research Needs and Applications to Reduce Erosion and Sedimentation in Tropical Steeplands, Suva, Fiji, 11–15 June 1990. Von Werner, M. and Schmidt, J. 1997. ‘EROSION’ 2D/3D—Ein Computermodell zur Simulation der Bodenerosion durch Wasser, Band III: EROSION 3D—Modellgrundlagen, Bedienungsanleitung. Hrsg.: Sächsische Landesanstalt für Landwirtschaft, Sächsisches Landesmt für Umwelt und Geologie. Wainwright, J. 1996. ‘ Hillslope response to extreme storm events: the example of the Vaison-La-Romaine event’, in M. G. Anderson and S. Brooks (eds), Advances in Hillslope Processes. John Wiley & Sons, pp. 997–1026. Wesseling, C. G., Karssenberg, D., Van Deursen, W. P. A. and Burrough, P. A. 1995. ‘Integrating dynamic environmental models in GIS: the development of a dynamic modelling language’, Trans. GIS, 1, 40–48. Woolhiser, D. A., Smith, R. E. and Goodrich, D. C. 1990. ‘KINEROS: a kinematic runoff and erosion model: documentation and user manual’, USD A—ARS, ARS-77. USDA-ARS. Citing Literature Volume12, Issue6Special Issue: Geographical Information SystemsMay 1998Pages 905-922 ReferencesRelatedInformation
Referência(s)