The Kinase‐dependent Function of Lck in T‐Cell Activation Requires an Intact Site for Tyrosine Autophosphorylation a
1995; Wiley; Volume: 766; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1995.tb26655.x
ISSN1749-6632
Autores Tópico(s)Neutrophil, Myeloperoxidase and Oxidative Mechanisms
ResumoAnnals of the New York Academy of SciencesVolume 766, Issue 1 p. 99-116 The Kinase-dependent Function of Lck in T-Cell Activation Requires an Intact Site for Tyrosine Autophosphorylationa HUA XU, HUA XU Amgen, Inc., M.S. #8-1-A-236, Amgen Center, Thousand Oaks, CA 91320–1789.Search for more papers by this authorDAN R. LITTMAN, DAN R. LITTMAN Biochemistry and Biophysics and Howard Hughes Medical Institute University of California, San Francisco San Francisco, California 94143–0414Search for more papers by this author HUA XU, HUA XU Amgen, Inc., M.S. #8-1-A-236, Amgen Center, Thousand Oaks, CA 91320–1789.Search for more papers by this authorDAN R. LITTMAN, DAN R. LITTMAN Biochemistry and Biophysics and Howard Hughes Medical Institute University of California, San Francisco San Francisco, California 94143–0414Search for more papers by this author First published: September 1995 https://doi.org/10.1111/j.1749-6632.1995.tb26655.xCitations: 11 Skirball Institute, New York University Medical Center, 540 First Avenue, New York, NY 10016. a This work was supported by NIH Grant AI23513 to D. R. Littman. H. Xu was a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation. D. R. Littman is an Investigator of the Howard Hughes Medical Institute. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Bolen, J. B., R. B. Rowley, C. Spana & A. Y. Tsgankov. 1992. The Scr family of tyrosine kinases in hemopoietic signal transduction. FASEB J. 6: 3403–3409. 10.1096/fasebj.6.15.1281458 CASPubMedWeb of Science®Google Scholar 2 Weiss, A. & D. R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76: 263–274. 10.1016/0092-8674(94)90334-4 CASPubMedWeb of Science®Google Scholar 3 Molina, T. J., K. Kishihara, D. P. Siderovski, W. van Ewijk, A. Narendran, E. Timms, A. Wakeham, C. J. Paige, K. U. Hartmann, A. Veillette, D. Davidson & T. W. Mak. 1992. Profound block in thymocyte development in mice lacking p56lck. Nature 357: 161–164. 10.1038/357161a0 CASPubMedWeb of Science®Google Scholar 4 Penninger, J., K. Kishihara, T. Molina, V. A. Wallace, E. Timms, S. M. Hedrick & T. W. Mak. 1993. Requirement for tyrosine kinase p56lck for thymic development of transgenic gamma delta T cells. Science 260: 358–361. 10.1126/science.8469988 CASPubMedWeb of Science®Google Scholar 5 Straus, D. B. & A. Weiss. 1992. Genetic evidence for the involvement of the Lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70: 585–593. 10.1016/0092-8674(92)90428-F CASPubMedWeb of Science®Google Scholar 6 Karnitz, L., S. L. Sutor, T. Torigoe, J. C. Reed, M. P. Bell, D. J. McKean, P. J. Leibson & R. T. Abraham. 1992. Effects of p56lck deficiency on the growth and cytolytic effector function of an interleukin-2-dependent cytotoxic T-cell line. Mol. Cell. Biol. 12: 4521–30. 10.1128/MCB.12.10.4521 CASPubMedWeb of Science®Google Scholar 7 Rudd, C. E., J. M. Trevillyan, J. D. Dasgupta, L. L. Wong & S. F. Schlossman. 1988. The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc. Natl. Acad. Sci. USA 85: 5190–5194. 10.1073/pnas.85.14.5190 CASPubMedWeb of Science®Google Scholar 8 Shaw, A. S., J. Chalupny, J. A. Whitney, C. Hammond, K. E. Amerein, P. Kavathas, B. M. Sefton & J. K. Rose. 1990. Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56lck tyrosine protein kinase. Mol. Cell. Biol. 10: 1853–1862. 10.1128/MCB.10.5.1853 CASPubMedWeb of Science®Google Scholar 9 Shaw, A. S., K. E. Amerein, C. Hammond, D. F. Stern, B. M. Sefton & F. K. Rose. 1989. The Lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain. Cell 59: 627–636. 10.1016/0092-8674(89)90008-1 CASPubMedWeb of Science®Google Scholar 10 Turner, J. M., M. H. Brodsky, B. A. Irving, S. D. Levin, R. M. Perlmutter & D. R. Littman. 1990. Interaction of the unique N-terminal region of the tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell 60: 755–765. 10.1016/0092-8674(90)90090-2 CASPubMedWeb of Science®Google Scholar 11 Veillette, A., M. A. Bookman, E. M. Horak & J. B. Bolen. 1988. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55: 301–308. 10.1016/0092-8674(88)90053-0 CASPubMedWeb of Science®Google Scholar 12 Glaichenhaus, N., N. Shastri, D. R. Littman & J. M. Turner. 1991. Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 64: 511–520. 10.1016/0092-8674(91)90235-Q CASPubMedWeb of Science®Google Scholar 13 Zamoyska, R., P. Derham, S. D. Gorman, P. von Hoegen, J. B. Bolen, A. Veillette & J. R. Parnes. 1990. Inability of CD8 alpha polypeptides to associate with p56lck correlates with impaired function in vitro and lack of expression in vivo. Nature 342: 278–81. 10.1038/342278a0 Web of Science®Google Scholar 14 Xu, H. & D. R. Littman. 1993. A kinase-independent function of Lck in potentiating antigen-specific T cell activation. Cell 74: 633–643. 10.1016/0092-8674(93)90511-N CASPubMedWeb of Science®Google Scholar 15 Collins, T. L. & S. J. Burakoff. 1993. Tyrosine kinase activity of CD4-associated p56lck may not be required for CD4-dependent T-cell activation. Proc. Natl. Acad. Sci. USA 90: 11885–9. 10.1073/pnas.90.24.11885 CASPubMedWeb of Science®Google Scholar 16 Killeen, N. & D. R. Littman. 1993. Helper T cell development in the absence of CD4-p56lck association. Nature 364: 729–732. 10.1038/364729a0 CASPubMedWeb of Science®Google Scholar 17 Levin, S. D., K. M. Abraham, S. J. Anderson, K. A. Forbush & R. M. Perlmutter. 1993. The protein tyrosine kinase p56lck regulates thymocyte development independently of its interaction with CD4 and CD8 coreceptors. J. Exp. Med. 178: 245–55. 10.1084/jem.178.1.245 CASPubMedWeb of Science®Google Scholar 18 Abraham, N., M. C. Miceli, J. R. Parnes & A. Veillette. 1991. Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature 350: 62–66. 10.1038/350062a0 CASPubMedWeb of Science®Google Scholar 19 Cooper, J. A. 1989. The Src family of protein tyrosine kinases. In Peptides and Protein Phosphorylation. B. Kemp & P. F. Alewood, Eds.: 85–113. CRC Press. Boca Raton , Florida . Google Scholar 20 Cooper, J. A. & B. Howell. 1993. The when and how of Src regulation. Cell 73: 1051–1054. 10.1016/0092-8674(93)90634-3 CASPubMedWeb of Science®Google Scholar 21 Amrein, K. E. & B. M. Sefton. 1988. Mutation of a site of tyrosine phosphorylation in the lymphocyte-specific tyrosine protein kinase, p56lck, reveals its oncogenic potential in fibroblasts. Proc. Natl. Acad. Sci. USA 85: 4247–4251. 10.1073/pnas.85.12.4247 CASPubMedWeb of Science®Google Scholar 22 Cooper, J. A., K. L. Gould, C. A. Cartwright & T. Hunter. 1986. Tyr527 is phosphorylated in pp60c-Src: implication for regulation. Science 231: 1431–1434. 10.1126/science.2420005 CASPubMedWeb of Science®Google Scholar 23 Kmiecik, T. E. & D. Shalloway. 1987. Activation and suppression of pp60c-Src transforming ability by mutations of its primary sites of tyrosine phosphorylation. Cell 49: 65–73. 10.1016/0092-8674(87)90756-2 CASPubMedWeb of Science®Google Scholar 24 Marth, J. D., J. A. Cooper, C. S. King, S. F. Ziegler, D. A. Tinker, R. W. Overell, E. G. Krebs & R. M. Perlmutter. 1988. Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kinase (pp56lck). Mol. Cell. Biol. 8: 540–550. 10.1128/MCB.8.2.540 CASPubMedWeb of Science®Google Scholar 25 Murphy, S. M., M. Bergman & D. O. Morgan. 1993. Suppression of c-Src activity by C-terminal Src kinase involves the C-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 5290–5300. 10.1128/MCB.13.9.5290 CASPubMedWeb of Science®Google Scholar 26 Sieh, M., J. B. Bolen & A. Weiss. 1993. CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J. 12: 315–321. 10.1002/j.1460-2075.1993.tb05659.x CASPubMedWeb of Science®Google Scholar 27 Superti-Furga, G., S. Fumagalli, M. Koegl, S. A. Courtneidge & G. Draetta. 1993. Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src. EMBO J. 12: 2525–2634. Google Scholar 28 Bergman, M., T. Mustelin, C. Oetken, J. Partanen, N. A. Flint, K. E. Amrein, M. Autero, P. Burn & K. Alitalo. 1992. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO J. 11: 2919–2924. 10.1002/j.1460-2075.1992.tb05361.x CASPubMedWeb of Science®Google Scholar 29 Cahir Mcfarland, E. D., T. R. Hurley, J. T. Pingel, B. M. Sefton, A. Shaw & M. L. Thomas. 1993. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signalling through the T-cell receptor. Proc. Natl. Acad. Sci. USA 90: 1402–1406. 10.1073/pnas.90.4.1402 CASPubMedWeb of Science®Google Scholar 30 Chow, L. M., M. Fournel, D. Davidson & A. Veillette. 1993. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature 365: 156–160. 10.1038/365156a0 CASPubMedWeb of Science®Google Scholar 31 Mustelin, T. & A. Altman. 1990. Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene 5: 809–813. CASPubMedWeb of Science®Google Scholar 32 Mustelin, T., K. M. Coggeshall & A. Altman. 1989. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc. Natl. Acad. Sci. USA 86: 6302–6306. 10.1073/pnas.86.16.6302 CASPubMedWeb of Science®Google Scholar 33 Ostergaard, H. L., D. A. Shackelford, T. R. Hurley, P. Johnson, R. Hyman, B. M. Sefton & I. S. Trowbridge. 1989. Expression of CD45 alters phosphorylation of the Lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. USA 86: 8959–8963. 10.1073/pnas.86.22.8959 CASPubMedWeb of Science®Google Scholar 34 Veillette, A. & M. Fournel. 1990. The CD4 associated tyrosine protein kinase p56lck is positively regulated through its site of autophosphorylation. Oncogene 5: 1455–1462. CASPubMedWeb of Science®Google Scholar 35 Cross, F. R. & H. Hanafusa. 1983. Local mutagenesis of Rous Sacoma virus: the major sites of tyrosine and serine phosphorylation of p60Src are dispensable for transformation. Cell 34: 597–607. 10.1016/0092-8674(83)90392-6 CASPubMedWeb of Science®Google Scholar 36 Snyder, M. A. & J. M. Bishop. 1984. A mutation at the major phosphotyrosine in pp60v-Src alters oncogenic potential. Virology 136: 375–386. 10.1016/0042-6822(84)90174-0 CASPubMedWeb of Science®Google Scholar 37 Snyder, M. A., J. M. Bishop, W. W. Colby & A. D. Levinson. 1983. Phosphorylation of tyrosine-416 is not required for the transforming properties and kinase activity of pp60v-Src. Cell 32: 891–901. 10.1016/0092-8674(83)90074-0 CASPubMedWeb of Science®Google Scholar 38 Abraham, N. & A. Veillette. 1990. Activation of p56lck through mutation of a regulatory carboxy-terminal tyrosine residue requires intact sites of autophosphorylation and myristylation. Mol. Cell. Biol. 10: 5197–5206. 10.1128/MCB.10.10.5197 CASPubMedWeb of Science®Google Scholar 39 Caron, L., N. Abraham, T. Pawson & A. Veillette. 1992. Structural requirement for enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Mol. Cell. Biol. 12: 2720–2729. 10.1128/MCB.12.6.2720 CASPubMedWeb of Science®Google Scholar 40 Landau, N. R. & D. R. Littman. 1992. Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J. Virol. 66: 5110–5113. 10.1128/jvi.66.8.5110-5113.1992 CASPubMedWeb of Science®Google Scholar 41 Hubbard, S. R., L. Wei, L. Ellis & W. A. Hendrickson. 1994. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372: 746–754. 10.1038/372746a0 CASPubMedWeb of Science®Google Scholar 42 Nada, S., M. Okada, A. Macauley, J. A. Cooper & H. Nakagawa. 1991. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylated a negative regulatory site of p60s-Src. Nature 351: 69–72. 10.1038/351069a0 CASPubMedWeb of Science®Google Scholar 43 Okada, M., S. Nada, Y. Yamanashi, T. Yamamoto & H. Nakagawa. 1991. CSK: a protein-tyrosine kinase involved in regulation of Src family kinase. J. Biol. Chem. 266: 24249–24252. CASPubMedWeb of Science®Google Scholar 44 Shibuya, H., K. Kohu, K. Yamada, E. L. Barsoumian, R. M. Perlmutter & T. Taniguchi. 1994. Functional dissection of p53lck, a protein tyrosine kinase which mediates interleukin-2-induced activation of the c-fos gene. Mol. Cell. Biol. 14: 5812–5819. 10.1128/MCB.14.9.5812 CASPubMedWeb of Science®Google Scholar 45 Luo, K. & B. M. Sefton. 1992. Activated Lck tyrosine protein kinase stimulates antigen-independent interleukin-2 production in T cells. Mol. Cell. Biol. 12: 4724–4732. 10.1128/MCB.12.10.4724 CASPubMedWeb of Science®Google Scholar 46 Haughn, L., S. Gratton, L. Caron, R. P. Sekaly, A. Veillette & M. Julius. 1992. Association of tyrosine kinase p56lck with CD4 inhibits the induction of growth through the αβ T-cell receptor. Nature 358: 328–331. 10.1038/358328a0 CASPubMedWeb of Science®Google Scholar Citing Literature Volume766, Issue1Receptor Activation by Antigens, Cytokines, Hormones, and Growth FactorsSeptember 1995Pages 99-116 ReferencesRelatedInformation
Referência(s)