Antitubercular sterols fromThalia multiflora Horkel ex Koernicke
2005; Wiley; Volume: 19; Issue: 10 Linguagem: Inglês
10.1002/ptr.1731
ISSN1099-1573
AutoresMaria‐Teresa Gutierrez‐Lugo, Yuehong Wang, Scott G. Franzblau, Enrique Suárez, Barbara N. Timmermann,
Tópico(s)Traditional and Medicinal Uses of Annonaceae
ResumoPhytotherapy ResearchVolume 19, Issue 10 p. 876-880 Research Article Antitubercular sterols from Thalia multiflora Horkel ex Koernicke Maria-Teresa Gutierrez-Lugo, Maria-Teresa Gutierrez-Lugo Department of Pharmacology and Toxicology, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Arizona, 1703 E. Mabel Street, Tucson, Arizona 85721-0207, USASearch for more papers by this authorYuehong Wang, Yuehong Wang Institute for Tuberculosis Research (M/C 964), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, USASearch for more papers by this authorScott G. Franzblau, Scott G. Franzblau Institute for Tuberculosis Research (M/C 964), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, USASearch for more papers by this authorEnrique Suarez, Enrique Suarez INTA, Instituto Nacional de Recursos Biológicos, Las Cabañas y Los Reseros s/n, 1712 Villa Udaondo, Castellar Buenos Aires, ArgentinaSearch for more papers by this authorBarbara N. Timmermann, Corresponding Author Barbara N. Timmermann [email protected] Department of Pharmacology and Toxicology, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Arizona, 1703 E. Mabel Street, Tucson, Arizona 85721-0207, USA1703 E. Mabel Street, Tucson, AZ 85721-0207, USA.Search for more papers by this author Maria-Teresa Gutierrez-Lugo, Maria-Teresa Gutierrez-Lugo Department of Pharmacology and Toxicology, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Arizona, 1703 E. Mabel Street, Tucson, Arizona 85721-0207, USASearch for more papers by this authorYuehong Wang, Yuehong Wang Institute for Tuberculosis Research (M/C 964), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, USASearch for more papers by this authorScott G. Franzblau, Scott G. Franzblau Institute for Tuberculosis Research (M/C 964), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, USASearch for more papers by this authorEnrique Suarez, Enrique Suarez INTA, Instituto Nacional de Recursos Biológicos, Las Cabañas y Los Reseros s/n, 1712 Villa Udaondo, Castellar Buenos Aires, ArgentinaSearch for more papers by this authorBarbara N. Timmermann, Corresponding Author Barbara N. Timmermann [email protected] Department of Pharmacology and Toxicology, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Arizona, 1703 E. Mabel Street, Tucson, Arizona 85721-0207, USA1703 E. Mabel Street, Tucson, AZ 85721-0207, USA.Search for more papers by this author First published: 31 October 2005 https://doi.org/10.1002/ptr.1731Citations: 14AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Bioassay guided isolation of an antitubercular extract of the aerial parts of Thalia multiflora led to the isolation of nine stigmast-5-ene and stigmasta-5,22-dien steroids, four isorhamnetin and quercetin flavonoid glycosides, two ceramides, an indole alkaloid and two simple phenolic compounds. Stigmast-5-en-3β-ol-7-one (2), stigmast-4-ene-6β-ol-3-one (3), stigmast-5,22-dien-3β-ol-7-one (7) and stigmast-4,22-dien-6β-ol-3-one (8) were found to be the most active compounds with MIC values of 1.98 ± 0.02, 4.2 ± 0.17, 1.0 ± 0.06 and 2.2 ± 0.3 µg/mL, respectively. Compounds 2, 3, 7 and 8 were not cytotoxic to Vero cells at 102 µg/mL. This investigation constitutes the first report of a chemical study of a species of the genus Thalia. Copyright © 2005 John Wiley & Sons, Ltd. REFERENCES Aldrich Library of 13C and 1H FT NMR Spectra, 1992, 2, 247B; 1288B, (Guaiacol). 1051C; 1506A, (4-hydroxycinnamic acid). Asakawa Y, Toyota M, Harrison LJ. 1985. Isotachin A and isotachin B, two sulfur-containing acrylates from the liverwort Isotachis japonica. Phytochemistry 24: 1505– 1508. Ayyad SN. 2002. A new cytotoxic stigmastane steroid from Pistia stratiotes. Pharmazie 57: 212– 214. Cabrera AL. 1968. Flora de la Provincia de Buenos Aires. Coleccion Cientifica del INTA: Buenos Aires, Argentina, Volume 4, part 1, 574. Cantrell CL, Franzblau SG, Fisher NH. 2001. Antimycobacterial plant terpenoids. Planta Med 67: 685– 694. Cantrell CL, Lu T, Fronczek FR, Fischer NH, Adams LB, Franzblau SG. 1996. Antimycobacterial cycloartanes from Borrichia frutescens. J Nat Prod 59: 1131– 1136. Collins LS, Franzblau SG. 1997. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41: 1004– 1009. Dehmlow EV, Guntenhoner M, Van Ree E. 2000. On the isolation of sitosterol-(6′-O-acyl)-β-d-glucopyranosides from Flacourtia indica and on unexpected formation of gels by the triacetate. Z Naturforschung B 55: 333– 335. Della Greca M, Monaco P, Previtera L. 1990. Studies on aquatic plants. Part XVI. Stigmasterols from Typha latifolia. J Nat Prod 53: 1430– 1435. Faizi S, Ali M, Saleem R, Bibi I, Bibi S. 2001. Complete 1H and 13C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative. Mag Reson Chem 39: 399– 405. Kojima H, Sato N, Hatano A, Ogura H. 1990. Constituents of the Labiateae plants. Part 5. Sterol glucosides from Prunella vulgaris. Phytochemistry 29: 2351– 2355. Lamb DC, Kelly DE, Manning NJ, Kelly SL. 1998. A sterol biosynthetic pathway In Mycobacterium. FEBS Lett 437: 142– 144. Pedras MSC, Khan AQ. 2000. Biotransformation of the phytoalexin camalexin by the phytopathogen Rhizoctonia solani. Phytochemistry 53: 59– 69. Pettit GR, Numata A, Cragg GM et al. 2000. Isolation and structures of schleicherastatins 1–7 and schleicheols 1 and 2 from the teak forest medicinal tree Schleichera oleosa. J Nat Prod 63: 72– 78. Sang S, Cheng X, Zhu N et al. 2001. Flavonol glycosides and novel iridoid glycoside from the leaves of Morinda citrifolia. J Agric Food Chem 49: 4478– 4481. Sang S, Lapsley K, Jeong W-S, Lachance PA, Ho C-T, Rosen RT. 2002. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). J Agric Food Chem 50: 2459– 2463. Secrist J, Anathan S, Kwong C et al. 2001. Search for new drugs for treatment of tuberculosis. Antimicrob Agents Chemother 45: 1943– 1946. Shu Y, Jones SR, Kinney WA, Selinsky BS. 2002. The synthesis of spermine analogs of the shark aminosterol squalamine. Steroids 67: 291– 304. Su B-N, Misico R, Park EJ et al. 2002. Isolation and characterization of bioactive principles of the leaves and stems of Physalis philadelphica. Tetrahedron 58: 3453– 3466. Timmermann BN, Wächer GA, Valcic S et al. 1999. The Latin American ICBG: The first five years. Pharm. Biol 37: (Suppl. J. Rosenthal, Ed.) 35– 54. Yaoita Y, Ishizuka T, Kakuda R, Machida K, Kikuchi M. 2000. Structures of new ceramides from the fruit bodies of Grifola frondosa. Chem Pharm Bull 48: 1356– 1358. Citing Literature Volume19, Issue10October 2005Pages 876-880 ReferencesRelatedInformation
Referência(s)