The Parkinson Disease-associated Leucine-rich Repeat Kinase 2 (LRRK2) Is a Dimer That Undergoes Intramolecular Autophosphorylation
2008; Elsevier BV; Volume: 283; Issue: 24 Linguagem: Inglês
10.1074/jbc.m708718200
ISSN1083-351X
AutoresElisa Greggio, Ibardo Zambrano, Alice Kaganovich, Alexandra Beilina, Jean‐Marc Taymans, Veronique Daniëls, Patrick A. Lewis, Shushant Jain, Jinhui Ding, Ali Syed, Kelly Jean Thomas Craig, Veerle Baekelandt, Mark Cookson,
Tópico(s)Plant biochemistry and biosynthesis
ResumoMutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and apparently sporadic Parkinson disease. LRRK2 is a multidomain protein kinase with autophosphorylation activity. It has previously been shown that the kinase activity of LRRK2 is required for neuronal toxicity, suggesting that understanding the mechanism of kinase activation and regulation may be important for the development of specific kinase inhibitors for Parkinson disease treatment. Here, we show that LRRK2 predominantly exists as a dimer under native conditions, a state that appears to be stabilized by multiple domain-domain interactions. Furthermore, an intact C terminus, but not N terminus, is required for autophosphorylation activity. We identify two residues in the activation loop that contribute to the regulation of LRRK2 autophosphorylation. Finally, we demonstrate that LRRK2 undergoes intramolecular autophosphorylation. Together, these results provide insight into the mechanism and regulation of LRRK2 kinase activity.
Referência(s)