Artigo Revisado por pares

Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

2015; American Institute of Aeronautics and Astronautics; Volume: 38; Issue: 7 Linguagem: Inglês

10.2514/1.g000525

ISSN

1533-3884

Autores

Marco B. Quadrelli, Lincoln J. Wood, Joseph E. Riedel, Michael C. McHenry, MiMi Aung, L. Alberto Cangahuala, R. Volpe, P. Beauchamp, J. A. Cutts,

Tópico(s)

Spacecraft and Cryogenic Technologies

Resumo

No AccessSurvey PaperGuidance, Navigation, and Control Technology Assessment for Future Planetary Science MissionsMarco B. Quadrelli, Lincoln J. Wood, Joseph E. Riedel, Michael C. McHenry, MiMi Aung, Laureano A. Cangahuala, Richard A. Volpe, Patricia M. Beauchamp and James A. CuttsMarco B. QuadrelliJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, Lincoln J. WoodJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, Joseph E. RiedelJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, Michael C. McHenryJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, MiMi AungJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, Laureano A. CangahualaJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, Richard A. VolpeJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, Patricia M. BeauchampJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099 and James A. CuttsJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099Published Online:8 May 2015https://doi.org/10.2514/1.G000525SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Vision and Voyages for Planetary Science in the Decade 2013–2022, National Academies Press, Washington, D.C., 2011. Google Scholar[2] "Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions: Part I. Onboard and Ground Navigation and Mission Design," Jet Propulsion Lab., California Inst. of Technology, Rept. D-75394, Pasadena, CA, Oct. 2012. Google Scholar[3] "Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions: Part II. Onboard Guidance, Navigation, and Control (GNC)," Jet Propulsion Lab., California Inst. of Technology, Rept. D-75431, Pasadena, CA, Jan. 2013. Google Scholar[4] "Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions: Part III. Surface Guidance, Navigation, and Control (GNC)," Jet Propulsion Lab., California Inst. of Technology, Rept. D-78106, Pasadena, CA, April 2013. Google Scholar[5] Wood L. J. and et al., "Navigation and Mission Design Technologies for Future Planetary Science Missions," Guidance and Control 2013, edited by Hardaway L. R., Vol. 149, Advances in the Astronautical Sciences, Univelt, San Diego, CA, 2013, pp. 577–597. Google Scholar[6] NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space, National Academies Press, Washington, D.C., 2012. Google Scholar[7] Wood L. J., "Evolution of Deep Space Navigation: 1962–1989," Guidance and Control 2008, edited by Drews M. E. and Culp R. D., Vol. 131, Advances in the Astronautical Sciences, Univelt, San Diego, CA, 2008, pp. 285–308. Google Scholar[8] Wood L. J., "Evolution of Deep Space Navigation: 1989–1999," F. Landis Markley Astronautics Symposium, Vol. 132, Advances in the Astronautical Sciences, Univelt, San Diego, CA, 2008, pp. 877–898. Google Scholar[9] Wood L. J., "Evolution of Deep Space Navigation: 1999–2004," 24th AAS/AIAA Spaceflight Mechanics Meeting, American Astronautical Soc. Paper 2014-255, Jan. 2014. Google Scholar[10] Ocampo C. A. and Byrnes D. V., "Mission Design and Trajectory Optimization," Encyclopedia of Aerospace Engineering, edited by Blockley R. and Shyy W., Vol. 5, Wiley, Hoboken, NJ, 2010, Article 253. doi:https://doi.org/10.1002/9780470686652.eae286 Google Scholar[11] Russell R. P., "Missions to Dynamic Environments," Encyclopedia of Aerospace Engineering, edited by Blockley R. and Shyy W., Vol. 5, Wiley, Hoboken, NJ, 2010, Article 258. doi:https://doi.org/10.1002/9780470686652.eae291 Google Scholar[12] Scheeres D. J., Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and Planetary Satellite Orbiters, Springer-Praxis Books in Astronautical Engineering, Springer–Verlag, New York, 2012, Chaps. 2–15. CrossrefGoogle Scholar[13] Davis K. and Anderson R. L., "Libration Point Orbits and the Three-Body Problem," Encyclopedia of Aerospace Engineering, Vol. 5, edited by Blockley R. and Shyy W., Vol. 5, Wiley, Hoboken, NJ, 2010, Article 257. doi:https://doi.org/10.1002/9780470686652.eae290 Google Scholar[14] Konopliv A. S. and et al., "JPL Lunar Gravity Field to Spherical Harmonic Degree 660 from the GRAIL Primary Mission," Journal of Geophysical Research, Vol. 118, July 2013, pp. 1415–1434. doi:https://doi.org/10.1002/jgre.20097 JGREA2 0148-0227 CrossrefGoogle Scholar[15] Sweetser T. H., Broschart S. B., Angelopoulos V., Whiffen G. J., Folta D. C., Chung M.-K., Hatch S. J. and Woodard M. A., "ARTEMIS Mission Design," Space Science Reviews, Vol. 165, Nos. 1–4, 2011, pp. 27–57. doi:https://doi.org/10.1007/s11214-012-9869-1 SPSRA4 0038-6308 CrossrefGoogle Scholar[16] Wood L. J., "Interplanetary Navigation," Encyclopedia of Aerospace Engineering, edited by Blockley R. and Shyy W., Vol. 5, Wiley, Hoboken, NJ, 2010, Article 254, pp. 3071–3084. doi:https://doi.org/10.1002/9780470686652.eae287 CrossrefGoogle Scholar[17] Ely T., Seubert J., Bell J., Murphy D. and Kuang D., "Expected Performance of the Deep Space Atomic Clock Mission," 24th AAS/AIAA Spaceflight Mechanics Meeting, American Astronautical Soc. Paper 2014-254, Jan. 2014. Google Scholar[18] Owen W. M., Duxbury T. C., Acton C. H., Synnott S. P., Riedel J. E. and Bhaskaran S., "Brief History of Optical Navigation at JPL," Guidance and Control 2008, edited by Drews M. E. and Culp R. D., Vol. 131, Advances in the Astronautical Sciences, Univelt, San Diego, CA, 2008, pp. 329–348. Google Scholar[19] Bhaskaran S., "Autonomous Navigation for Deep Space Missions," 12th International Conference on Space Operations, SpaceOps Organization Paper 2012-1267135, German Aerospace Center DLR, Stockholm, Sweden, June 2012. LinkGoogle Scholar[20] Thornton C. L. and Border J. S., Radiometric Tracking Techniques for Deep-Space Navigation, Wiley, Hoboken, NJ, 2003, pp. 9–58, Chaps. 3–4. CrossrefGoogle Scholar[21] Border J. S., Lanyi G. E. and Shin D. K., "Radio Metric Tracking for Deep Space Navigation," Guidance and Control 2008, edited by Drews M. E. and Culp R. D., Vol. 131, Advances in the Astronautical Sciences, Univelt, San Diego, CA, 2008, pp. 309–328. Google Scholar[22] Asmar S. W., Armstrong J. W., Iess L. and Tortola P., "Spacecraft Doppler Tracking: Noise Budget and Accuracy Achievable in Precision Radio Science Observations," Radio Science, Vol. 40, No. 2, March 2005, Paper RS2001. doi:https://doi.org/10.1029/2004RS003101 RASCAD 0048-6604 CrossrefGoogle Scholar[23] Smith D., Zuber M., Torrence M., McGarry J., Pearlman M. and Smith D., "Laser Ranging to the Lunar Reconnaissance Orbiter (LRO)," 15th International Laser Ranging Workshop, EOS Space Systems Pty Limited, Griffith ACT, Australia, Oct. 2006, pp. 468–471. Google Scholar[24] Smith D. E., Zuber M. T., Sun X., Neumann G. A., Cavanaugh J. F., McGarry J. F. and Zagwodski T. W., "Two-Way Laser Link over Interplanetary Distance," Science, Vol. 311, Jan. 2006, p. 53. doi:https://doi.org/10.1126/science.1120091 SCIEAS 0036-8075 CrossrefGoogle Scholar[25] Romano M., Friedman D. A. and Shay T. J., "Laboratory Experimentation of Autonomous Spacecraft Approach and Docking to a Collaborative Target," Journal of Spacecraft and Rockets, Vol. 44, No. 1, Jan.–Feb. 2007, pp. 164–173. doi:https://doi.org/10.2514/1.22092 JSCRAG 0022-4650 LinkGoogle Scholar[26] Alexander J., Cheng Y., Zheng W., Trawny N. and Johnson A., "Terrain Relative Navigation Sensor Enabled by Multi-Core Processing," Proceedings of the IEEE Aerospace Conference (AEROCONF 2012), IEEE Publ., Piscataway, NJ, March 2012. doi:https://doi.org/10.1109/AERO.2012.6187003 Google Scholar[27] Johnson A. and Montgomery J., "Overview of Terrain Relative Navigation for Precise Lunar Landing," Proceedings of the IEEE Aerospace Conference (Aerospace08), IEEE Publ., Piscataway, NJ, March 2008. doi:https://doi.org/10.1109/AERO.2008.4526302 Google Scholar[28] Johnson A., Huertas A., Werner R. and Montgomery J., "Analysis of On-Board Hazard Detection and Avoidance for Safe Lunar Landing," Proceedings of the IEEE Aerospace Conference (Aerospace08), IEEE Publ., Piscataway, NJ, March 2008. doi:https://doi.org/10.1109/AERO.2008.4526301 Google Scholar[29] Mourikis A., Trawny N., Roumeliotis S., Johnson A., Ansar A. and Matthies L., "Vision Aided Inertial Navigation for Spacecraft Entry Descent and Landing," IEEE Transactions on Robotics and Automation, Vol. 25, No. 2, April 2009, pp. 264–280. doi:https://doi.org/10.1109/TRO.2009.2012342 IRAUEZ 1042-296X CrossrefGoogle Scholar[30] Bhaskaran S., Mastrodemos N., Riedel J. and Synnott S., "Optical Navigation for the Stardust Wild 2 Encounter," 18th International Symposium of Space Flight Dynamics, European Space Agency Publications Division, Noordwijk, The Netherlands, Oct. 2004, pp. 455–460. Google Scholar[31] Bhaskaran S., Riedel J. E., Kennedy B. and Wang T. C., "Navigation of the Deep Space 1 Spacecraft at Borrelly," AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2002-4815, Aug. 2002. doi:https://doi.org/10.2514/MASTR02 LinkGoogle Scholar[32] Kubitschek D., Mastrodemos N., Werner R., Kennedy B., Synnott S., Null G., Bhaskaran S., Riedel J. and Vaughan A., "Deep Impact Autonomous Navigation: The Trials of Targeting the Unknown," 29th Annual AAS Guidance and Control Conference, American Astronautical Soc. Paper 2006-081, Feb. 2006. doi:https://doi.org/10.2514/MAST06 Google Scholar[33] Riedel J. E. and et al., "Optical Navigation Plan and Strategy for the Lunar Lander Altair; OpNav for Lunar and other Crewed and Robotic Exploration Applications," AIAA GNC Conference, AIAA Paper 2010-7719, Aug. 2010. doi:https://doi.org/10.2514/MGNC10 LinkGoogle Scholar[34] Riedel J., Werner R., Vaughan A., Mastrodemos N., Huntington G., Grasso C., Wang T.-C., Myers D., Gaskell R. and Bayard D., "Configuring the Deep Impact AutoNav System for Lunar, Comet and Mars Landing," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2008-6940, Aug. 2008. doi:https://doi.org/10.2514/MAST08 LinkGoogle Scholar[35] Riedel J. E., Bhaskaran S., Synnott S. P., Desai S. D., Bollman W. E., Dumont P. J., Halsell C. A., Han D., Kennedy B. M., Null G. W., Owen W. M., Werner R. A. and Williams B. G., "Navigation for the New Millennium: Autonomous Navigation for Deep Space-1," Proceedings of the 12th International Symposium on Flight Dynamics, ESA SP-403, European Space Agency, Paris, June 1997, pp. 303–320. Google Scholar[36] Riedel J. E., Guinn J., Delpech M., Dubois J. B., Geller D. and Kachmar P., "Combined Open-Loop and Autonomous Search and Rendezvous Navigation System for the CNES/NASA Mars Premier Orbiter Mission," 26th Annual AAS Guidance and Control Conference, American Astronautical Soc. Paper 2003-012, Feb. 2003. Google Scholar[37] Wolf A. A., Graves C., Powell R. and Johnson W., "Systems for Pinpoint Landing at Mars," Proceedings of the 14th AAS/AIAA Space Flight Mechanics Conference, American Astronautical Soc. Paper 2004-272, Feb. 2004. doi:https://doi.org/10.2514/MAST04 Google Scholar[38] Manning R. M. and Adler M. A., "Landing on Mars," AIAA Space 2005 Conference, AIAA Paper 2005-6742, Sept. 2005. Google Scholar[39] Braun R. D., Wells G. W., Lafleur J. W., Verges A. A. and Tiller C. W., "Entry, Descent and Landing Challenges of Human Mars Exploration," 29th AAS Guidance and Control Conference, American Astronautical Soc. Paper 2006-072, Feb. 2006. Google Scholar[40] Braun R. D. and Manning R. M., "Mars Exploration Entry, Descent, and Landing Challenges," Journal of Spacecraft and Rockets, Vol. 44, No. 2, 2007, pp. 310–323. doi:https://doi.org/10.2514/1.25116 JSCRAG 0022-4650 LinkGoogle Scholar[41] Kipp D. M., San Martin M., Essmiller J. and Way D., "Mars Science Laboratory Entry, Descent, and Landing Triggers," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2007. doi:https://doi.org/10.1109/AERO.2007.352825 Google Scholar[42] Prakash R. and et al., "Mars Science Laboratory Entry, Descent, and Landing System Overview," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2008. doi:https://doi.org/10.1109/AERO.2008.4526283 Google Scholar[43] Singh G., SanMartin A. M. and Wong E. C., "Guidance and Control Design for Powered Descent and Landing on Mars," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2007. doi:https://doi.org/10.1109/AERO.2007.352818 Google Scholar[44] Way D. W., Powell R. W., Chen A., Steltzner A. D., San Martin A. M., Burkhart P. D. and Mendeck G. F., "Mars Science Laboratory: Entry, Descent, and Landing System Performance," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2007. doi:https://doi.org/10.1109/AERO.2007.352821 Google Scholar[45] Acikmese B. and Ploen S.R., "Convex Programming Approach to Powered Descent Guidance for Mars Landing," AIAA Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, Sept.–Oct. 2007, pp. 1353–1366. doi:https://doi.org/10.2514/1.27553 LinkGoogle Scholar[46] Johnson A. and Montgomery J., "Overview of Terrain Relative Navigation for Precise Lunar Landing," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2008. doi:https://doi.org/10.1109/AERO.2008.4526302 Google Scholar[47] Mourikis A., Trawny N., Roumeliotis S., Johnson A., Ansar A. and Matthies L., "Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing," IEEE Transactions on Robotics, Vol. 25, No. 2, 2009, pp. 264–280. doi:https://doi.org/10.1109/TRO.2009.2012342 IRAUEZ 1042-296X CrossrefGoogle Scholar[48] Park R. S., Bhaskaran S., Bordi J. J., Cheng Y., Johnson A. E., Kruizinga G. L., Lisano M. E., Owen W. M. and Wolf A. A., "Trajectory Reconstruction of the ST-9 Sounding Rocket Experiment Using IMU and Landmark Data," AAS/AIAA Astrodynamics Specialist Conference Proceedings, American Astronautical Soc. Paper 2009-408, Aug. 2009. Google Scholar[49] Brugarolas P. B., Martin A. M. S. and Wong E. C., "MSL Entry Attitude Controller," International Planetary Probe Workshop, Session 5, Jointly organized by CTAE, BAIE, DEIMOS Space, Ajuntament Barcelona, and CIMNE, 2010. Google Scholar[50] San Martin M., "MSL SkyCrane Landing—A GNC perspective," International Planetary Probe Workshop, Session 5, Jointly organized by CTAE, BAIE, DEIMOS Space, Ajuntament Barcelona, and CIMNE, 2010. Google Scholar[51] Sell S., "MSL Terminal Descent Strategy and Challenges," International Planetary Probe Workshop, Session 5, Jointly organized by CTAE, BAIE, DEIMOS Space, Ajuntament Barcelona, and CIMNE, 2010. Google Scholar[52] San Martin M., Brugarolas P. B., Lee S. W. and Wong E. C., "Mars Science Lander GNC Design for Entry, Descent, and Landing," International ESA GNC Conference, NASA, Jet Propulsion Lab., Pasadena, CA, 2011, http://hdl.handle.net/2014/43921. Google Scholar[53] Wolf A., Acikmese B., Cheng Y., Casoliva J., Carson J. and Ivanov M., "Toward Improved Landing Precision on Mars," 2011 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2011. doi:https://doi.org/10.1109/AERO.2011.5747243 Google Scholar[54] Carson J. M., Acikmese B., Blackmore L. and Wolf A., "Capabilities of Convex Powered-Descent Guidance Algorithms for Onboard Spacecraft Implementations with Altitude, Position, Speed, and Thrust Constraints," 2011 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2011. doi:https://doi.org/10.1109/AERO.2011.5747244 Google Scholar[55] Serricchio F., San Martin A. and Wong E. C., "MSL Navigation Filter," 23rd AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Soc. Paper 2013-418, Feb. 2013. Google Scholar[56] Brugarolas P., San Martin A. and Wong E., "MSL Entry Controller," 23rd AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Soc. Paper 2013-235, Feb. 2013. Google Scholar[57] San Martin M., Wong E. C. and Lee S. W., "Development of the MSL Guidance, Navigation, and Control System for Entry, Descent and Landing," 36th Annual AAS Guidance and Control Conference, NASA, Jet Propulsion Lab., Pasadena, CA, Feb. 2013, http://hdl.handle.net/2014/43254. Google Scholar[58] Cangahuala L. A. and Minett G., "Orbit Design Method to Support Small Body Interior Radar Studies," 18th International Symposium on Space Flight Dynamics, European Space Agency Publications Division, Noordwijk, The Netherlands, Oct. 2004, p. 233. Google Scholar[59] Gaskell R., "Landmark Navigation and Target Characterization in a Simulated Itokawa Encounter," AAS/AIAA Astrodynamics Specialist Conference Proceedings, Vol. 123, Univelt, San Diego, CA, Aug. 2005, p. 629. Google Scholar[60] Bayard D. S. and Brugarolas P. B., "Estimation Algorithm for Vision-Based Exploration of Small Bodies in Space," Proceedings of the 2005 American Control Conference, IEEE Publ., Piscataway, NJ, June 2005, pp. 4589–4595. doi:https://doi.org/10.1109/ACC.2005.1470719 Google Scholar[61] Gaskell R. W., "Small Body Simulations for Navigation Approach and Landing," AIAA Space 2005 Conference and Exposition, AIAA Paper 2005-6813, Aug.–Sept. 2005. doi:https://doi.org/10.2514/MSPACE05 LinkGoogle Scholar[62] Açikmese B. A. and Carson J. M., "Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability," 2006 American Control Conference, IEEE Publ., Piscataway, NJ, June 2006, pp. 887–893. doi:https://doi.org/10.1080/0020717031000124156 Google Scholar[63] Carson J. and Acikmese B., "Model Predictive Control Technique with Guaranteed Resolvability and Required Thruster Silent Times for Small-Body Proximity Operations," AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2006-6780, Aug. 2006. doi:https://doi.org/10.2514/MGNC06 Google Scholar[64] Açikmese B., Carson J. and Bayard D. S., "Robust Model Predictive Control Algorithm for Incrementally-Conic Uncertain/Nonlinear Systems," International Journal of Robust and Nonlinear Control, Vol. 21, No. 5, 2011, pp. 563–590. doi:https://doi.org/10.1002/rnc.1613 IJRCEA 1099-1239 CrossrefGoogle Scholar[65] Bayard D. S., "Reduced-Order Kalman Filtering with Relative Measurements," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 2, March–April 2009, pp. 679–686. doi:https://doi.org/10.2514/1.37217 JGCDDT 0162-3192 LinkGoogle Scholar[66] Mandic M., Acikmese B., Bayard D. S. and Blackmore L., "Analysis of the Touch-and-Go Surface Sampling Concept for Comet Sample Return Missions," 35th Annual AAS Guidance and Control Conference, NASA, Jet Propulsion Lab., Pasadena, CA, 2012, http://hdl.handle.net/2014/42803. Google Scholar[67] Bayard D. S. and Brugarolas P. B., "On-Board Vision-Based Spacecraft Estimation Algorithm for Small Body Exploration," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 1, 2008, pp. 243–260. doi:https://doi.org/10.1109/TAES.2008.4517002 IEARAX 0018-9251 CrossrefGoogle Scholar[68] Bayard D. S., "Reduced-Order Kalman Filtering for Relative Measurement Updates," IEEE Transactions on Aerospace and Electronic Systems, Nov. 2012 (submitted for publication). IEARAX 0018-9251 Google Scholar[69] Açıkmeşe B. and Bayard D. S., "Markov Chain Approach to Probabilistic Swarm Guidance," American Control Conference, IEEE Publ., Piscataway, NJ, June 2012, pp. 6300–6307. doi:https://doi.org/10.1109/ACC.2012.6314729 Google Scholar[70] Chung S.-J. and Hadaegh F. Y., "Swarms of Femtosats for Synthetic Aperture Applications," Fourth International Conference on Spacecraft Formation Flying Missions and Technologies (SFFMT), May 2011. Google Scholar[71] Lay O. P., Dubovitsky S., Peters R. D., Burger J. P., Ahn S.-W., Steier W. H., Fetterman H. R. and Chang Y., "MSTAR: A Submicrometer Absolute Metrology System," Optics Letters, Vol. 28, No. 11, 2003, pp. 890–892. doi:https://doi.org/10.1364/OL.28.000890 OPLEDP 0146-9592 CrossrefGoogle Scholar[72] Scharf D. P., Hadaegh F. Y., Kuhnert A. C., Kovalik J. M. and Açıkmeşe B., "Integrated Formation Optical Communication and Estimation System for Precision Collaborative Missions," Third International Symposium on Formation Flying Missions & Technologies, ESA Communication Production Office, ESTEC, Noordwijk, The Netherlands, April 2008. Google Scholar[73] Scharf D. P., Hadaegh F. Y. and Ploen S. R., "Survey of Spacecraft Formation Flying Guidance and Control (Part I): Guidance," Proceedings of the American Control Conference, IEEE Publ., Piscataway, NJ, June 2003, pp. 1733–1739. Google Scholar[74] Scharf D. P., Hadaegh F. Y. and Ploen S. R., "Survey of Spacecraft Formation Flying Guidance and Control (Part II): Control," Proceedings of the American Control Conference, Vol. 4, IEEE Publ., Piscataway, NJ, June 2004, pp. 2976–2985. Google Scholar[75] Tien J., "Technology Validation of the Autonomous Formation Flying Sensor for Precision Formation Flying," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2003. doi:https://doi.org/10.1109/AERO.2003.1235048 Google Scholar[76] Bonitz R., "Brush Wheel Sampler—A Sampling Device for Small-Body Touch-and-Go Missions," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2012. doi:https://doi.org/10.1109/AERO.2012.6187049 Google Scholar[77] Peterson L., "Quantification of Margins and Uncertainties for Model-Informed Flight System Qualification," NASA Thermal and Fluids Analysis Workshop, Paper TFAWS2011-IN-01, NASA Langley Research Center, Aug. 2011. Google Scholar[78] Bonitz R., Shiraishi L., Robinson M., Carsten J., Volpe R., Trebi-Ollennu A., Arvidson R., Chu P., Wilson J. and Davis K., "Phoenix Mars Lander Robotic Arm," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2009. doi:https://doi.org/10.1109/AERO.2009.4839306 Google Scholar[79] Pavone M., Acikmese B., Nesnas I. and Starek J., "Spacecraft Autonomy Challenges for Next Generation Space Missions," Springer Lecture Notes in Control and Information Sciences, Springer–Verlag, New York, 2014 (submitted for publication). Google Scholar[80] Yahja A., Singh S. and Stentz A., "Efficient On-Line Path Planner for Outdoor Mobile Robots," Robotics and Autonomous Systems, Vol. 32, Nos. 2–3, Aug. 2000, pp. 129–143. doi:https://doi.org/10.1016/S0921-8890(99)00114-1 RASOEJ 0921-8890 CrossrefGoogle Scholar[81] Blackmore L., Ono M. and Williams B. C., "Chance-Constrained Optimal Path Planning with Obstacles," IEEE Transactions on Robotics, Vol. 27, Jan. 2011, pp. 1080–1094. doi:https://doi.org/10.1109/TRO.2011.2161160 IRAUEZ 1042-296X CrossrefGoogle Scholar[82] Nabbe B. and Hebert M., "Extending the Path-Planning Horizon," International Journal of Robotics Research, Vol. 26, No. 10, Oct. 2007, pp. 997–1024. doi:https://doi.org/10.1177/0278364907084100 IJRREL 0278-3649 CrossrefGoogle Scholar[83] Wolf M. T., Blackmore L., Kuwata Y., Fathpour N., Elfes A. and Newman C., "Probabilistic Motion Planning of Balloons in Strong, Uncertain Wind Fields," IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, May 2010. doi:https://doi.org/10.1109/ROBOT.2010.5509135 Google Scholar[84] Swift G., Carmichael C., Allen G., Madias G., Miller E. and Monreal R., "Compendium of XRTC Radiation Results on All Single-Event Effects Observed in the Virtex-5QV," ReSpace/MAPLD 2011 Conference, COSMIAC, Aug. 2011. Google Scholar[85] Malone M., "On-Board Processing Expandable Reconfigurable Architecture (OPERA) Program Overview," Fault-Tolerant Spaceborne Computing Employing New Technologies Workshop, JPL, Sandia, MITRE, Aerospace, UIUC, AFRL, May 2008. Google Scholar[86] Beahan J., Edmonds L., Ferraro R. D. and Johnston A., "Detailed Radiation Fault Modeling of the Remote Exploration and Experimentation (REE) First Generation Testbed Architecture," Proceedings of the IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2000. doi:https://doi.org/10.1109/AERO.2000.878499 Google Scholar[87] Howard T. M., Morfopoulos A., Morrison J., Kuwata Y., Villalpando C., Matthies L. and McHenry M., "Enabling Continuous Planetary Rover Navigation Through FPGA Stereo and Visual Odometry," Proceedings of the IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2012. doi:https://doi.org/10.1109/AERO.2012.6187041 Google Scholar[88] Haldemann A., McHenry M., Petras R., Bornstein B., Castano R., Cameron J., Estlin T., Farr T., Gaines D., Jain A., Leff C., Lim C., Nesnas I., Pomerantz M., Powell M., Shu I. and Volpe R., "Simulation to Evaluate Autonomous Behaviors for Mobile Planetary Surface Science Missions," IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2007. doi:https://doi.org/10.1109/AERO.2007.352698 Google Scholar[89] Cooper B. K., Hartman F., Maxwell S., Wright J. and Jeng J., "Using RSVP for Analyzing State and Previous Activities for the Mars Exploration Rovers," Space OPS 2004 Conference, AIAA, Boston, May 2004. doi:https://doi.org/10.2514/6.2004-641-438 Google Scholar[90] Potter K., "Uncertainty Visualization State of the Art," USA/South America Symposium on Stochastic Modeling & Uncertainty Quantification, Aug. 2011. Google Scholar[91] Goldberg S. B., Maimone M. W. and Matthies L., "Stereo Vision and Rover Navigation Software for Planetary Exploration," Proceedings of the IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2002. doi:https://doi.org/10.1109/AERO.2002.1035370 Google Scholar[92] Kirk R. L. and et al., "Ultrahigh Resolution Topographic Mapping of Mars with MRO HiRISE Stereo Images: Meter-Scale Slopes of Candidate Phoenix Landing Sites," Journal of Geophysical Research: Planets, Vol. 113, No. E3, March 2008. doi:https://doi.org/10.1029/2007JE003000 Google Scholar[93] Hwangbo J., Chen Y. and Li R., "Precision Processing of HiRISE Stereo Orbital Images for Topographic Mapping on Mars," ASPRS 2010 Annual Conference [CD-ROM], ASPRS, Annapolis Junction, MD, April 2010. Google Scholar[94] Li R., Hwangbo J., Chen Y. and Di K., "Rigorous Photogrammetric Processing of HiRISE Stereo Imagery for Mars Topographic Mapping," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 7, July 2011. doi:https://doi.org/10.1109/TGRS.2011.2104965 IGRSD2 0196-2892 CrossrefGoogle Scholar[95] Carsten J., Rankin A., Ferguson D. and Stentz A., "Global Planning on the Mars Exploration Rovers: Software Integration and Surface Testing," Journal of Field Robotics, Vol. 26, No. 4, April 2009, pp. 337–357. doi:https://doi.org/10.1002/rob.v26:4 1556-4967 CrossrefGoogle Scholar[96] Stentz A., "Optimal and Efficient Path Planning for Partially-Known Environments," Proceedings IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, May 1994. doi:https://doi.org/10.1109/ROBOT.1994.351061 Google Scholar[97] Elfes A., Hall J., Kulczycki E., Clouse D., Morfopoulos A., Montgomery J., Cameron J., Ansar A. and Machuzak R., "Autonomy Architecture for Aerobot Exploration of the Saturnian Moon Titan," IEEE Aerospace and Electronic Systems Magazine, Vol. 23, No. 7, July 2008, pp. 16–24. doi:https://doi.org/10.1109/MAES.2008.4579287 CrossrefGoogle Scholar[98] Lamassoure E. S., Wall S. D. and Easter R. W., "Model-Based Engineering Design for Trade Space Exploration Throughout the Design Cycle," AIAA Space Conference and Exposition, AIAA Paper 2004-5855, Sept. 2004. Google Scholar[99] Fairfield N., Kantor G. and Wettergreen D., "Real-Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels," Journal of Field Robotics, Vol. 24, Nos. 1–2, 2007, pp. 3–21. doi:https://doi.org/10.1002/rob.20165 1556-4967 CrossrefGoogle Scholar[100] Cutts J., Nock K. T., Jones J. A., Rodriguez G., Balaram J., Powell G. E. and Synnott S. P., "Aerovehicles for Planetary Exploration," IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 1995. Google Scholar[101] Nesnas I. and et al., "Axel and DuAxel Rovers for the Sustained Exploration of Extreme Terrains," Journal of Field Robotics, Special Issue on Space Robotics, Part II, Vol. 29, No. 4, July–Aug. 2012, pp. 663–685. doi:https://doi.org/10.1002/rob.21407 Google Scholar[102] Pavone M., Castillo J., Hoffman J. and Nesnas I., "Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies," NASA Innovative Advanced Concepts Final Rept., 2012. Google Scholar[103] Bellerose J. and Scheeres D., "Dynamics and Control for Surface Exploration of Small Bodies," Proceedings of AIAA/AAS 2008 Astrodynamics Specialist Conference, AIAA Paper 2008-6251, Aug. 2008. doi:https://doi.org/10.2514/MAST08 Google Scholar[104] Allen R., Pavone M., McQuin C., Nesnas I., Castillo J., Nguyen T. N. and Hoffman J., "Internally-Actuated Rovers for All-Access Surface Mobility: Theory and Experimentation," ICRA Conference, IEEE Publ., Piscataway, NJ, 2012, pp. 5481–5488. doi:https://doi.org/10.1109/ICRA.2013.6631363 Google Scholar[105] Elfes A., Bueno S., Bergerman M., DePaiva E., Ramos J. and Azinheira J., "Robotic Airships for Exploration of Planetary Bodies with an Atmosphere: Autonomy Challenges," Autonomous Robots, Vol. 14, Nos. 2–3, 2003, pp. 147–164. doi:https://doi.org/10.1023/A:1022227602153 AUROF2 1573-7527 CrossrefGoogle Scholar[106] Elfes A., Montgomery J. F., Hall J. L., Joshi S. S., Payne J. and Bergh C. F., "Autonomous Flight Control for a Planetary Exploration Aerobot," AIAA Space Conference, AIAA Paper 2005-6717, Aug. 2005. doi:https://doi.org/10.2514/MSPACE05 LinkGoogle Scholar[107] Hall J. L., Yavrouian A. H., Kerzhanovich V. V., Fredrickson T., Sandy C., Pauken M. T., Kulczycki E. A., Walsh G. J., Said M. and Day S., "Technology Development for a Long Duration, Mid-Cloud Level Venus Balloon," Advances in Space Research, Vol. 48, No. 7, 2011, pp. 1238–1247. doi:https://doi.org/10.1016/j.asr.2011.05.034 ASRSDW 0273-1177 CrossrefGoogle Scholar[108] Hall J. L., Pauken M., Kerzhanovich V. V., Walsh G. J., Fairbrother D., Shreves C. and Lachenmeier T., "Flight Test Results for Aerially Deployed Mars Balloons," Proceedings of AIAA Balloon Systems Conference, AIAA, Reston, VA, 2007, pp. 21–24. doi:https://doi.org/10.2514/MBST07 Google Scholar[109] Zacny K., Wilson J., Chu P. and Craft J., "Prototype Rotary Percussive Drill for the Mars Sample Return Mission," Proceedings of IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2011, pp. 1–8. doi:https://doi.org/10.1109/AERO.2011.5747294 Google Scholar[110] Willis P. A., Greer H. F., Fisher A. M., Hodyss R. P., Grunthaner F. J., Jiao H., Mair D. and Harrison J. D., "Development of In Situ Microchip-Based Liquid Chromatography for Titan Lake Sample," Astrobiology Science Conference, LPI Contribution 1538, 2010, p. 5188. Google Scholar[111] Quadrelli B. M., Backes P., Wilkie W. K., Keim J., Quijano U., Mukherjee R., Scharf D., Bradford S. C. and McKee M., "Investigation of Phase Transition-Based Tethered Systems for Small Body Sample Capture," Acta Astronautica, Vol. 68, No. 7, 2011, pp. 947–973. doi:https://doi.org/10.1016/j.actaastro.2010.08.040 AASTCF 0094-5765 CrossrefGoogle Scholar Next article

Referência(s)