Design and Structural Extension of a Supramolecular Inclusion-Compound Host Made by the Formation of Dimers of Isonicotinic Acid and Thiocyanato Coordinating Bridges
2002; Wiley; Volume: 8; Issue: 20 Linguagem: Inglês
10.1002/1521-3765(20021018)8
ISSN1521-3765
Autores Tópico(s)Supramolecular Chemistry and Complexes
ResumoChemistry – A European JournalVolume 8, Issue 20 p. 4803-4810 Full Paper Design and Structural Extension of a Supramolecular Inclusion-Compound Host Made by the Formation of Dimers of Isonicotinic Acid and Thiocyanato Coordinating Bridges Ryo Sekiya, Ryo Sekiya Department of Basic Science Graduate School of Arts and Sciences, The University of Tokyo Komaba, Meguro, Tokyo 153-8902 (Japan) Fax: (+81) 3 5454 6569Search for more papers by this authorShin-ichi Nishikiori Prof., Shin-ichi Nishikiori Prof. [email protected] Department of Basic Science Graduate School of Arts and Sciences, The University of Tokyo Komaba, Meguro, Tokyo 153-8902 (Japan) Fax: (+81) 3 5454 6569Search for more papers by this author Ryo Sekiya, Ryo Sekiya Department of Basic Science Graduate School of Arts and Sciences, The University of Tokyo Komaba, Meguro, Tokyo 153-8902 (Japan) Fax: (+81) 3 5454 6569Search for more papers by this authorShin-ichi Nishikiori Prof., Shin-ichi Nishikiori Prof. [email protected] Department of Basic Science Graduate School of Arts and Sciences, The University of Tokyo Komaba, Meguro, Tokyo 153-8902 (Japan) Fax: (+81) 3 5454 6569Search for more papers by this author First published: 14 October 2002 https://doi.org/10.1002/1521-3765(20021018)8:20 3.0.CO;2-HCitations: 51Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract A new inclusion-compound host with a preference for large planar aromatics guests has been synthesized by the formation of dimers of isonicotinic acid and a one-dimensional Ni thiocyanato complex with double hydrogen bonds. Its cavity size can be easily extended by modification of the isonicotinic acid dimer as shown below (Ni–Ni distances top to bottom: 16.256(2), 20.9826(8), 23.722(5) Å). Abstracten A new host design for an inclusion compound with a preference for large planar aromatic guest molecules has been proposed. Our host design includes a rectangular cavity made using a long and a short building block based on the concept of supramolecular chemistry. The long building block facilitates the inclusion of large guests, and the short building block prevents the formation of an interpenetrated structure, which is often observed in frameworks with large void spaces. The long building block is made when dimers of 4-pyridinecarboxylic acid (isoH) form through hydrogen bonding between the two carboxylic acid moieties. This isoH dimer can link two transition metal centers using the N atoms at both ends to act as a long building block. For the short building block, the thiocyanato ion was used. This makes a bent bridge between two metal centers to form a 1D double-chain [M(SCN)2]∞ complex. From the self-assembly of isoH, SCN− and Ni2+, a 2D network of [Ni(SCN)2(isoH)2]∞, in which the 1D [Ni(SCN)2]∞ complexes are linked by the isoH dimers, is built up. The rectangular cavity is formed as a mesh within the 2D network. The crystal of our inclusion compound has a layered structure of 2D networks, and a 1D channel-like cavity penetrating the layered 2D networks is formed where guests may be included. Moreover, our host design has the advantage of easy extension of the host structure. Replacement of isoH with another component and use of three components is possible for making the long building block. In the latter case, a linear spacer having two carboxy groups is inserted into the isoH dimer to form a long building block with a trimer structure. Based on our host design, a series of new inclusion compounds were synthesized. The crystal structures of three compounds were determined by single crystal X-ray diffraction. These were a biphenyl inclusion compound [Ni(SCN)2(isoH)2]⋅1/2C12H10 (the basic case), a 9,10-dichloroanthracene inclusion compound [Ni(SCN)2(acrylH)2]⋅1/2C14H8Cl2, where isoH is replaced with 3-(4-pyridinyl)-2-propenoic acid (acrylH), and a perylene inclusion compound [Ni(SCN)2(isoH)2(fumaricH2)]⋅1/2C20H12, whose long building block is a trimer inserted with fumaric acid (fumaricH2) as a linear spacer. Abstractja References 1 1a S. M. Contakes, T. B. Rauchfuss, Angew. Chem. 2000, 112, 2060–2062; Angew. Chem. Int. Ed. 2000, 39, 1984–1986; 1b R. D. Schnebeck, E. Freisinger, B. Lippert, Eur. J. Inorg. Chem. 2000, 1193–1200; 1c G. De Munno, M. Julve, F. Nicolo', F. Lloret, J. Faus, R. Ruiz, E. Sinn, Angew. Chem. 1993, 105, 588–590; Angew. Chem. Int. Ed. Engl. 1993, 32, 613–615; 1d D. M. L. Goodgame, S. Menzer, A. M. Smith, D. J. Williams, Angew. Chem. 1995, 107, 605–607; Angew. Chem. Int. Ed. 1995, 34, 574–575; 1e M. L. Tong, S. L. Zheng, X. M. Chen, Chem. Eur. J. 2000, 6, 3729–3738; 1f C. He, B. G. Zhang, C. Duan, J. Li, Q. J. Meng, Eur. J. Inorg. Chem. 2000, 2549–2554; 1g F. A. Cotton, C. Lin, C. A. Murillo, Inorg. Chem. 2001, 40, 478–484. 2 P. J. Hagrmann, D. Hagrman, J. Zubieta, Angew. Chem. 1999, 111, 2798–2848; Angew. Chem. Int. Ed. 1999, 38, 2638–2684. 3 R. Robson in Comprehensive Supramolecular Chemistry, Vol. 6 ( ), Pergamon, Oxford, 1996, pp. 733–755. 4 J. Ferraris, D. O. Cowan, V. V. Walatka, J. H. Perlstein, J. Am. Chem. Soc. 1973, 95, 948. 5 J. M. Williams, M. A. Beno, H. H. Wang, P. C. W. Leung, T. J. Emge, U. Geiser, K. D. Carlson, Acc. Chem. Res. 1985, 18, 261–267. 6 W. Lin, O. R. Evans, R. G. Xiong, Z. Wang, J. Am. Chem. Soc. 1998, 120, 13 272–13 273. 7 7a M. A. S. Goher, M. A. M. Abu-Youssef, F. A. Mautner, R. Vicente, A. Escuer, Eur. J. Inorg. Chem. 2000, 1819–1823; 7b X. Hao, Y. Wei, S. Zhang, Chem. Commun. 2000, 2271–2272; 7c R. E. D. Sesto, A. M. Arif, J. S. Miller, Inorg. Chem. 2000, 39, 4894–4902; 7d M. M. Matsushita, A. Izuoka, T. Sugawara, T. Kobayashi, N. Wada, N. Takeda, M. Ishikawa, J. Am. Chem. Soc. 1997, 119, 4369–4379. 8 8a M. Eddaoudi, H. Li, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 1391–1397; 8b O. M. Yaghi, C. E. Davis, G. Li, H. Li, J. Am. Chem. Soc. 1997, 119, 2861–2868. 9 T. Iwamoto in Comprehensive Supramolecular Chemistry, Vol. 6 ( ), Pergamon, Oxford, 1996, pp. 644–690. 10 S. R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558–1595; Angew. Chem. Int. Ed. 1998, 37, 1460–1494. 11 11a E. Weber, J. Ahrendt, M. Czugler, I. Csöregh, Angew. Chem. 1986, 98, 719–721; Angew. Chem. Int. Ed. Engl. 1986, 25, 746–748; 11b R. K. R. Jetti, F. Xue, T. C. W. Mak, A. Nangia, J. Chem. Soc. Perkin Trans. 2 2000, 1223–1232; 11c X. P. Yang, D. M. Du, Q. Li, T. C. W. Mak, H. N. C. Wong, Chem. Commun. 1999, 1607–1608; 11d K. Tanaka, D. Fujimoto, A. Altreuther, T. Oeser, H. Irngartinger, F. Toda, J. Chem. Soc. Perkin Trans. 2 2000, 2115–2120; 11e R. Thaimattam, F. Xue, J. A. R. P. Sarma, T. C. W. Mak, G. R. Desiraju, J. Am. Chem. Soc. 2001, 123, 4432–4445; 11f F. C. Krebs, M. Jørgensen, J. Org. Chem. 2001, 66, 6169–6173; 11g G. J. Kemperman, R. de Gelder, F. J. Dommerholt, P. C. Raemakers-Franken, A. J. H. Kiunder, B. Zwanenburg, Eur. J. Org. Chem. 2001, 3641–3650; 11h M. Szyrszyng, E. Nowak, M. Gdaniec, M. J. Milewska, A. Herman, T. Polonski, J. Org. Chem. 2001, 66, 7380–7384; 11i M. Sugahara, K. Sada, M. Miyata, Chem. Commun. 1999, 293–294; 11j K. Beketov, E. Weber, J. Seidel, K. Köhnke, K. Makhkamov, B. Ibragimov, Chem. Commun. 1999, 91–92; 11k M. R. Caira, A. Horne, L. R. Nassimbeni, F. Toda, J. Chem. Soc. Perkin Trans. 2 1997, 1717–1720; 11l A. T. Ung, D. Gizachew, R. Bishop, M. L. Scudder, I. G. Dance, D. C. Craig, J. Am. Chem. Soc. 1995, 117, 8745–8756; 11m R. D. Sommer, A. L. Rheingold, A. J. Goshe, B. Bosnich, J. Am. Chem. Soc. 2001, 123, 3940–3952; 11n K. Biradha, D. Dennis, V. A. MacKinnon, C. V. K. Sharma, M. J. Zaworotko, J. Am. Chem. Soc. 1998, 120, 11 894–11 903; 11o K. Endo, T. Ezuhara, M. Koyanagi, H. Masuda, Y. Aoyama, J. Am. Chem. Soc. 1997, 119, 499–505; 11p J. A. Swift, A. M. Pivovar, A. M. Reynolds, M. D. Ward, J. Am. Chem. Soc. 1998, 120, 5887–5894; 11q M. Akazome, T. Takahashi, K. Ogura, J. Org. Chem. 1999, 64, 2293–2300. 12a M. Miyata, K. Sada in Comprehensive Supramolecular Chemistry, Vol. 6 ( ), Pergamon, Oxford, 1996, pp. 147–176; 12b P. Dastidar, I. Goldberg in Comprehensive Supramolecular Chemistry, Vol. 6 ( ), Pergamon, Oxford, 1996, pp. 305–350; 12c F. Toda in Comprehensive Supramolecular Chemistry, Vol. 6 ( ), Pergamon, Oxford, 1996, pp. 465–516. 13 J. Lipkowski in Comprehensive Supramolecular Chemistry, Vol. 6 ( ), Pergamon, Oxford, 1996, pp. 691–714. 14 M. L. Tong, S. L. Zheng, X. M. Chen, Chem. Eur. J. 2000, 6, 3729–3738 15 M. D. Hollingsworth, B. D. Santarsiero, K. D. M. Harris, Angew. Chem. 1994, 106, 698–701; Angew. Chem. Int. Ed. 1994, 33, 649–652. 16 16a J. C. MacDonald, G. M. Whitesides, Chem. Rev. 1994, 94, 2383–2420; 16b R. Taylor, O. Kennard, Acc. Chem. Res. 1984, 17, 320–326; 16c G. R. Desiraju, Angew. Chem. 1995, 107, 2541–2558; Angew. Chem. Int. Ed. 1995, 32, 2311–2327; 16d G. R. Desiraju, Acc. Chem. Res. 1996, 29, 441–449; 16e G. R. Desiraju, Acc. Chem. Res. 1991, 24, 290–296. 17a S. S. Kuduva, D. C. Craig, A. Nangia, G. R. Desiraju, J. Am. Chem. Soc. 1999, 121, 1936–1944; 17b P. Holý, J. Závada, I. Císaøová, J. Podlaha, Angew. Chem. 1999, 111, 393–395; Angew. Chem. Int. Ed. 1999, 38, 381–383. 18 18a H. Koshima, S. Honke, J. Org. Chem. 1999, 64, 790–793; 18b H. Koshima, S. Honke, J. Fujita, J. Org. Chem. 1999, 64, 3916–3921; 18c K. Kinbara, Y. Harada, K. Saigo, J. Chem. Soc. Perkin Trans. 2 2000, 1339–2347; 18d E. Batchelor, J. Klinowski, W. Jones, J. Mater. Chem. 2000, 10, 839–848; 18e K. E. Schwiebert, D. N. Chin, J. C. MacDonald, G. M. Whitesides, J. Am. Chem. Soc. 1996, 118, 4018–4029; 18f S. Palacin, D. N. Chin, E. E. Simanek, J. C. MacDonald, G. M. Whitesides, M. T. McBridge, G. T. R. Palmore, J. Am. Chem. Soc. 1997, 119, 11 807–11 816; 18g M. Mazik, D. Bläser, R. Boese, Chem. Eur. J. 2000, 6, 2865–2873; 18h C. B. Aakeröy, A. M. Beatty, D. S. Leinen, Angew. Chem. 1999, 111, 1932–1936; Angew. Chem. Int. Ed. 1999, 38, 1815–1819; 18i C. B. Aakeröy, A. M. Beatty, D. S. Leinen, K. R. Lorimer, Chem. Commun. 2000, 935–936; 18j S. S. Kuduva, D. Bläser, R. Boese, G. R. Desiraju, J. Org. Chem. 2001, 66, 1621–2626; 18k H. Suezawa, T. Yoshida, M. Hirota, H. Takahashi, Y. Umezawa, K. Honda, S. Tsuboyama, M. Nishio, J. Chem. Soc. Perkin Trans. 2 2001, 2053–2058. 19 19a X. Zhao, Y. Chang, F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc. 1990, 112, 6627–6634; 19b L. A. Curtis, M. Blander, Chem. Rev. 1988, 88, 827–841. 20 F. H. Allen, W. D. S. Motherwell, P. R. Raithby, G. P. Shields, R. Taylor, New J. Chem. 1999, 25–34. 21 L. Leiserowitz, Acta Crystallogr. Sect. B 1976, 32, 775–802. 22 22a S. Noro, S. Kitagawa, M. Kondo, K. Seki, Angew. Chem. 2000, 111, 2161–2164; Angew. Chem. Int. Ed. 2000, 39, 2082–2084; 22b S. Subramanian, M. J. Zaworotko, Angew. Chem. 1995, 107, 2295–2297; Angew. Chem. Int. Ed. 1995, 34, 2127–2129. 23 L. R. MacGillivray, R. H. Groeneman, J. L. Atwood, J. Am. Chem. Soc. 1998, 120, 2676–2677. 24 24a R. G. Goel, W. P. Henry, M. J. Oliver, A. L. Beauchamp, Inorg. Chem. 1981, 20, 3924–3928; 24b L. Tchertanov, C. Pascard, Acta Crystallogr. Sect. B 1997, 53, 904–915; 24c G. Yang, H. G. Zhu, B. H. Liang, X. M. Chen, J. Chem. Soc. Dalton Trans. 2001, 580–585. 25 A. R. Katritzky, J. Chem. Soc. 1955, 2581–2586. 26 R. Sekiya, S. Nishikiori, Chem. Commun. 2001, 2612–2613. 27 27a M. Taniguchi, A. Ouchi, Bull. Chem. Soc. Jpn. 1986, 59, 3277–3278; 27b R. Vincente, A. Escuer, J. Ribas, X. Solans, J. Chem. Soc. Dalton Trans. 1994, 259–262; 27c M. Monfort, C. Bastos, C. Diaz, J. Ribas, Inorg. Chim. Acta 1994, 218, 185–188; 27d M. James, H. Kawaguchi, K. Tatsumi, T. W. Hambley, Acta Crystallogr. Sect. C 1998, 54, 1890–1811; 27e A. Escuer, S. B. Kumar, F. Mautner, R. Vincente, Inorg. Chim. Acta 1988, 269, 313–316; 27f T. K. Maji, I. R. Laskar, G. Mostafa, A. J. Welch, P. S. Mukherjee, N. R. Chaudhuri, Polyhedron 2001, 20, 651–655. 28 D. Braga, F. Grepioni, P. Sabatino, G. R. Desiraju, Organimetallics 1994, 13, 3532–3543. 29 G. M. Sheldrick, SHELXS-97, Program for the solution of crystal structures. University of Göttingen (Germany), 1997. 30 G. M. Sheldrick, SHELXL-97, Program for the refinement of crystal structures. University of Göttingen (Germany), 1997. 31 PROCESS-AUTO, Automatic Data Acquisition and Processing Package for Imaging Plate Diffractometer, Rigaku Corporation, Tokyo (Japan), 1998. Citing Literature Volume8, Issue20October 18, 2002Pages 4803-4810 ReferencesRelatedInformation
Referência(s)