Reversibly Crystalline Nanoparticles from Cellulose Alkyl Esters via Nanoprecipitation
2014; Wiley; Volume: 32; Issue: 2 Linguagem: Inglês
10.1002/ppsc.201400164
ISSN1521-4117
AutoresKai Zhang, Andreas Geißler, Thomas Heinze,
Tópico(s)Polymer Nanocomposites and Properties
ResumoParticle & Particle Systems CharacterizationVolume 32, Issue 2 p. 258-266 Full Paper Reversibly Crystalline Nanoparticles from Cellulose Alkyl Esters via Nanoprecipitation Kai Zhang, Corresponding Author Kai Zhang Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, GermanyE-mail: [email protected]Search for more papers by this authorAndreas Geissler, Andreas Geissler Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, GermanySearch for more papers by this authorThomas Heinze, Thomas Heinze Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstr. 10, 07743 Jena, GermanySearch for more papers by this author Kai Zhang, Corresponding Author Kai Zhang Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, GermanyE-mail: [email protected]Search for more papers by this authorAndreas Geissler, Andreas Geissler Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, GermanySearch for more papers by this authorThomas Heinze, Thomas Heinze Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstr. 10, 07743 Jena, GermanySearch for more papers by this author First published: 03 September 2014 https://doi.org/10.1002/ppsc.201400164Citations: 13Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Nanoparticles (NPs) from biopolymers, in particular polysaccharides, attract much attention but they are rarely systematically investigated in comparison to NPs from synthetic polymers. In this report, stable aqueous suspensions of NPs from cellulose alkyl esters with different alkyl chain lengths (cellulose stearoyl, lauroyl, and caproyl ester) and degrees of substitution (DS) are fabricated via nanoprecipitation. Their properties are investigated in terms of the average size, surface charge and polarity, temperature-responsive crystalline structure, and dry-state morphology, in relationship with the chemical compositions of cellulose esters. Generally, the average diameters of NPs increase with higher DS and longer alkyl chains length, but the surface hydrophobicity decreases with longer alkyl chain length. The presence of the crystallizable stearoyl groups along polymeric backbones renders polymeric NPs with reversibly temperature-responsive property. The NPs from cellulose stearoyl esters (CSE) with stearoyl groups of high contents (DS of 1.3 and 3) and poly(vinyl stearate) can be altered between more crystalline, solid nanospheres, and amorphous, liquid nanodroplets without the loss of their stability by changing the temperature. In comparison, NPs from CSE with a low DS of 0.3, cellulose lauroyl and caproyl ester contain only slightly ordered structure. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description ppsc201400164-sup-0001-S1.pdf964.6 KB Supplementary Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1a) S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, J. Controlled Release 2008, 126, 187; b) R. Langer, Nature 1998, 392, 5; c) D. Peer, J. M. Karp, S. Hong, O. C. FaroKHzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751. 2K. Landfester, Angew. Chem. 2009, 121, 4556. 3H. J. Chung, C. M. Castro, H. Im, H. Lee, R. Weissleder, Nat. Nanotechnol. 2013, 8, 369. 4F. Caruso, Adv. Mater. 2001, 13, 11. 5A. V. Kabanov, S. V. Vinogradov, Angew. Chem. Int. Ed. 2009, 48, 5418. 6A. Walther, A. H. Muller, Chem. Rev. 2013, 113, 5194. 7a) S. Boddohi, M. J. Kipper, Adv. Mater. 2010, 22, 2998; b) T. Liebert, S. Hornig, S. Hesse, T. Heinze, J. Am. Chem. Soc. 2005, 127, 10484; c) M. Nikolajski, J. Wotschadlo, J. H. Clement, T. Heinze, Macromol. Biosci. 2012, 12, 920; d) Z. Schnepp, Angew. Chem. Int. Ed. 2013, 52, 1096. 8a) M. R. Kulterer, V. E. Reichel, R. Kargl, S. Köstler, V. Sarbova, T. Heinze, K. Stana-Kleinschek, V. Ribitsch, Adv. Funct. Mater. 2012, 22, 1749; b) S. Schubert, J. J. T. Delaney, U. S. Schubert, Soft Matter 2011, 7, 1581; c) E. Van Keuren, E. Georgieva, J. Adrian, Nano Lett. 2001, 1, 141. 9a) E. Aschenbrenner, K. Bley, K. Koynov, M. Makowski, M. Kappl, K. Landfester, C. K. Weiss, Langmuir 2013, 29, 8845; b) P. Lucas, M. Vaysse, J. Aubry, D. Mariot, R. Sonnier, F. Ganachaud, Soft Matter 2011, 7, 5528. 10a) S. A. Vitale, J. L. Katz, Langmuir 2003, 19, 4105; b) M. C. Brick, H. J. Palmer, T. H. Whitesides, Langmuir 2003, 19, 6367; c) V. K. Lamer, R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847. 11S. Dumitriu, Polysaccharides: Structural Diversity and Functional Versatility, 2nd ed., Marcel Dekker, Inc., NY 2005. 12a) T. Heinze, T. Liebert, Progr. Polym. Sci. 2001, 26, 1689; b) D. Klemm, B. Heublein, H. P. Fink, A. Bohn, Angew. Chem. Int. Ed. 2005, 44, 3358. 13G. Odian, Principles of Polymerization, 4th ed., John Wiley & Sons, Hoboken, NJ 2004. 14S. Hornig, T. Heinze, Biomacromolecules 2008, 9, 1487. 15A. Geissler, M. Biesalski, T. Heinze, K. Zhang, J. Mater. Chem. A 2014, 2, 1107. 16J. E. Sealey, G. Samaranayake, J. G. Todd, W. G. Glasser, J. Polym. Sci., Part B: Polym. Phys. 1996, 34, 1613. 17T. R. Vierheller, M. D. Foster, A. Schmidt, K. Mathauer, W. Knoll, G. Wegner, S. Satija, C. F. Majkrzak, Macromolecules 1994, 27, 6893. 18a) W. Mehnert, K. Mäder, Adv. Drug Delivery Rev. 2012, 64, 83; b) W. Schärtl, Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Springer-Verlag, Heidelberg 2007; c)R. Xu, Particle Characterization: Light Scattering Methods, Kluwer Academic Publishers, NY 2002. 19E. Hecht, Optics, Addison-Wesley, San Francisco, CA 2002. 20D. R. Lide, W. M. Haynes, CRC Handbook of Chemistry and Physics, 90th ed., Taylor and Francis Group LLC, Boca Raton, FL 2010. 21A. Llordes, G. Garcia, J. Gazquez, D. J. Milliron, Nature 2013, 500, 323. 22M. Giese, J. C. De Witt, K. E. Shopsowitz, A. P. Manning, R. Y. Dong, C. A. Michal, W. Y. Hamad, M. J. MacLachlan, ACS Appl. Mater. Interfaces 2013, 5, 6854. 23a) L. Ma, R. Liu, J. Tan, D. Wang, X. Jin, H. Kang, M. Wu, Y. Huang, Langmuir 2010, 26, 8697; b) Q. Yan, J. Yuan, F. Zhang, X. Sui, X. Xie, Y. Yin, S. Wang, Y. Wei, Biomacromolecules 2009, 10, 2033. 24H.-Y. Shi, B. Hu, X.-C. Yu, R.-L. Zhao, X.-F. Ren, S.-L. Liu, J.-W. Liu, M. Feng, A.-W. Xu, S.-H. Yu, Adv. Funct. Mater. 2010, 20, 958. 25B. Gilbert, F. Huang, H. Zhang, G. A. Waychunas, J. F. Banfield, Science 2004, 305, 651. 26S. J. Billinge, I. Levin, Science 2007, 316, 561. 27K. W. Urban, Science 2008, 321, 506. 28a) C. Goncalves, J. A. Martins, F. M. Gama, Biomacromolecules 2007, 8, 392; b) K. Kalyanasundaram, J. K. Thomas, J. Am. Chem. Soc. 1977, 99, 2039. 29Y. Xiao, A. M. Ritcey, Langmuir 2000, 16, 4252. 30a) W. P. Hsu, K. Levon, K. S. Ho, A. S. Myerson, T. K. Kwei, Macromolecules 1993, 26, 1318; b) J. Watanabe, H. Ono, I. Uematsu, A. Abe, Macromolecules 1985, 18, 2141. 31C. Vaca-Garcia, G. Gozzelino, W. G. Glasser, M. E. Borredon, J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 281. 32Y.-K. Lai, Z. Chen, C.-J. Lin, J. Nanoeng. Nanomanuf. 2011, 1, 18. 33C. Vaca-Garcia, M. E. Borredon, A. Gaseta, Cellulose 2001, 8, 225. 34G. Goncalves, P. A. Marques, T. Trindade, C. P. Neto, A. Gandini, J. Colloid Interface Sci. 2008, 324, 42. 35P. M. Kosaka, Y. Kawano, M. C. Salvadori, D. F. S. Petri, Cellulose 2005, 12, 351. Citing Literature Volume32, Issue2February 2015Pages 258-266 ReferencesRelatedInformation
Referência(s)