Artigo Revisado por pares

ANATOMICALLY-CONSTRAINED EFFECTIVE CONNECTIVITY AMONG LAYERS IN A CORTICAL COLUMN MODELED AND ESTIMATED FROM LOCAL FIELD POTENTIALS

2010; Imperial College Press; Volume: 09; Issue: 04 Linguagem: Inglês

10.1142/s0219635210002548

ISSN

1757-448X

Autores

Roberto C. Sotero, Aleksandra Bortel, Ramón Martínez-Cancino, Sujaya Neupane, Peter O’Connor, Félix Carbonell, Amir Shmuel,

Tópico(s)

Advanced Neuroimaging Techniques and Applications

Resumo

Journal of Integrative NeuroscienceVol. 09, No. 04, pp. 355-379 (2010) Special Issue on the mesoscale in neuroimaging: creating bridges between the microscopic and system levelsNo AccessANATOMICALLY-CONSTRAINED EFFECTIVE CONNECTIVITY AMONG LAYERS IN A CORTICAL COLUMN MODELED AND ESTIMATED FROM LOCAL FIELD POTENTIALSROBERTO C. SOTERO, ALEKSANDRA BORTEL, RAMÓN MARTÍNEZ-CANCINO, SUJAYA NEUPANE, PETER O'CONNOR, FELIX CARBONELL, and AMIR SHMUELROBERTO C. SOTEROMontreal Neurological Institute Brain Imaging Centre, Departments of Neurology and Neurosurgery and Biomedical Engineering, McGill University, Montreal, Quebec, Canada, ALEKSANDRA BORTELMontreal Neurological Institute Brain Imaging Centre, Departments of Neurology and Neurosurgery and Biomedical Engineering, McGill University, Montreal, Quebec, Canada, RAMÓN MARTÍNEZ-CANCINONational Bioinformatics Center (BIOINFO), Havana, Cuba, SUJAYA NEUPANEMontreal Neurological Institute Brain Imaging Centre, Departments of Neurology and Neurosurgery and Biomedical Engineering, McGill University, Montreal, Quebec, Canada, PETER O'CONNORMontreal Neurological Institute Brain Imaging Centre, Departments of Neurology and Neurosurgery and Biomedical Engineering, McGill University, Montreal, Quebec, Canada, FELIX CARBONELLMontreal Neurological Institute Brain Imaging Centre, Departments of Neurology and Neurosurgery and Biomedical Engineering, McGill University, Montreal, Quebec, Canada, and AMIR SHMUELMontreal Neurological Institute Brain Imaging Centre, Departments of Neurology and Neurosurgery and Biomedical Engineering, McGill University, Montreal, Quebec, Canadahttps://doi.org/10.1142/S0219635210002548Cited by:19 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractWe propose a neural mass model for anatomically-constrained effective connectivity among neuronal populations residing in four layers (L2/3, L4, L5 and L6) within a cortical column. Eight neuronal populations in a given column — an excitatory population and an inhibitory population per layer — are assumed to be coupled via effective connections of unknown strengths that need to be estimated. The effective connections are constrained to anatomical connections that have been shown to exist in previous anatomical studies. The neural input to a cortical column is directed into the two populations in L4. The anatomically-constrained effective connectivity is captured by a system of 16 stochastic differential equations. Solving these equations yields the average postsynaptic potentials and transmembrane currents generated in each population. The current source density (CSD) responses in each layer, which serve as the model observations, are equated in the model to the sum of all currents generated within that layer. The model is implemented in a continuous-discrete state-space framework, and the innovation method is used for estimating the model parameters from CSD data. To this end, local field potential (LFP) responses to forepaw stimulation were recorded in rat area S1 using multi-channel linear probes. LFPs were converted to CSD signals, which were averaged within each layer, yielding one CSD response per layer. To estimate the effective strengths of connections between all cortical layers, the model was fitted to these CSD signals. The results show that the pattern of effective interactions is strongly influenced by the pattern of strengths of the anatomical connections; however, these two patterns are not identical. The estimated anatomically-constrained effective connectivity matrix and the anatomical connectivity matrix shared five of their six strongest connections, although rankings according to connection strength differed. The strongest effective connections were from excitatory neurons in layer 4 to excitatory neurons in layer 2/3. Our study shows the feasibility of estimating anatomically-constrained effective connectivity within a cortical column, and indicates that there is a strong influence of anatomical connectivity on effective connectivity between cortical layers.Keywords:Neural mass modellocal field potentialsLFPcurrent-source densityCSDeffective connectivitycortical columncortical layers References C. T. Andersonet al., Nat. Neurosci. 13, 739 (2010), DOI: 10.1038/nn.2538. Crossref, Medline, ISI, Google ScholarT. Binzegger, R. J. Douglas and K. A. C. Martin, Neuroscience 24, 8441 (2004). Crossref, Medline, ISI, Google ScholarT. Binzegger, R. J. Douglas and K. A. C. Martin, Neural. Netw. 22, 1071 (2009), DOI: 10.1016/j.neunet.2009.07.011. Crossref, Medline, ISI, Google ScholarP. Blomquistet al., PLoS. Comput. Biol. 5, e1000328 (2009), DOI: 10.1371/journal.pcbi.1000328. Crossref, Medline, Google ScholarK. P. Burnham and D. A. Anderson, Sociol. Methods. Res. 33, 261 (2004), DOI: 10.1177/0049124104268644. Crossref, ISI, Google ScholarR. B. Buxton, E. C. Wong and L. R. Frank, Magn. Reson. Med. 39, 855 (1998), DOI: 10.1002/mrm.1910390602. Crossref, Medline, ISI, Google ScholarJ. L. Dantzker and E. M. Callaway, Nat. Neurosci. 3, 701 (2000), DOI: 10.1038/76656. Crossref, Medline, ISI, Google ScholarO. David and K. J. Friston, Neuroimage 20, 1743 (2003), DOI: 10.1016/j.neuroimage.2003.07.015. Crossref, Medline, ISI, Google ScholarG. Decoet al., PLoS. Comput. Biol. 4, e1000092 (2008), DOI: 10.1371/journal.pcbi.1000092. Crossref, Medline, ISI, Google ScholarS. Di, C. Baumgartner and D. S. Barth, J. Neurophysiol. 63, 832 (1990). Crossref, Medline, ISI, Google ScholarR. J. Douglas and K. A. C. Martin, Annu. Rev. Neurosci. 27, 419 (2004), DOI: 10.1146/annurev.neuro.27.070203.144152. Crossref, Medline, ISI, Google ScholarR. J. Douglas and K. A. C. Martin, Curr. Biol. 19, R398 (2009), DOI: 10.1016/j.cub.2009.03.003. Crossref, Medline, Google ScholarR. W. Dykes and Y. Lamour, Neurophysiol 60, 703 (1988). Crossref, Medline, ISI, Google ScholarG. T. Einevollet al., J. Neurophysiol. 97, 2174 (2007), DOI: 10.1152/jn.00845.2006. Crossref, Medline, ISI, Google ScholarW. J. Freeman, Annu. Rev. Biophys. Bioeng. 1, 225 (1972), DOI: 10.1146/annurev.bb.01.060172.001301. Crossref, Medline, Google ScholarJ. A. Freeman and C. Nicholson, J. Neurophysiol. 38, 369 (1975). Crossref, Medline, ISI, Google ScholarK. J. Fristonet al., Neuroimage 12, 466 (2000), DOI: 10.1006/nimg.2000.0630. Crossref, Medline, ISI, Google ScholarK. J. Friston, L. Harrison and W. Penny, Neuroimage 19, 1273 (2003), DOI: 10.1016/S1053-8119(03)00202-7. Crossref, Medline, ISI, Google ScholarK. J. Friston, N. J. Trujillo-Barreto and J. Danizeau, Neuroimage 42, 849 (2008). Google Scholar P. E. Gill , W. Murray and M. H. Wright , Practical Optimization ( Academic Press , London , 1981 ) . Google ScholarH. Hasegawa, Phys. Rev. E. 67, 041903 (2003), DOI: 10.1103/PhysRevE.67.041903. Crossref, ISI, Google ScholarH. Hasegawa, Phys. Rev. E. 68, 041909 (2003), DOI: 10.1103/PhysRevE.68.041909. Crossref, Google ScholarS. Haeusler, K. Schuch and W. Maass, J. Physiol. 103, 73 (2009). ISI, Google ScholarC. J. Honeyet al., Proc. Natl. Acad. Sci. USA. 106, 2035 (2009), DOI: 10.1073/pnas.0811168106. Crossref, Medline, ISI, Google ScholarC. J. Honey, J. P. Thivierge and O. Sporns, Neuroimage 52, 766 (2010), DOI: 10.1016/j.neuroimage.2010.01.071. Crossref, Medline, ISI, Google ScholarB. H. Jansen and V. G. Rit, Biol. Cybern. 73, 357 (1995), DOI: 10.1007/BF00199471. Crossref, Medline, ISI, Google ScholarT. Jellema, C. H. M. Brunia and W. J. Wadman, Neuroscience 129, 283 (2004), DOI: 10.1016/j.neuroscience.2004.07.046. Crossref, Medline, ISI, Google ScholarJ. C. Jiménez, I. Shoji and T. Ozaki, J. Stat. Phys. 94, 587 (1999). Crossref, Google ScholarJ. C. Jiménez, Appl. Math. Lett. 15, 775 (2002). Crossref, Google ScholarJ. C. Jiménez, R. Biscay and T. Ozaki, Asian-Pacific Financial Markets 12, 109 (2006). Crossref, Google ScholarJ. C. Jiménez and T. Ozaki, Int. J. Control. 76, 1159 (2003). Crossref, Google ScholarM. Joneset al., Neuroimage 22, 956 (2004), DOI: 10.1016/j.neuroimage.2004.02.007. Crossref, Medline, ISI, Google ScholarS. Katzneret al., Neuron 61, 35 (2009), DOI: 10.1016/j.neuron.2008.11.016. Crossref, Medline, ISI, Google ScholarL. Lee, L. M. Harrison and A. Mechelli, Neuroimage 19, 457 (2002), DOI: 10.1016/S1053-8119(03)00062-4. Crossref, Medline, ISI, Google ScholarV. Lefebvreet al., Neural. Comput. 21, 2846 (2009), DOI: 10.1162/neco.2009.07-08-820. Crossref, Medline, ISI, Google ScholarS. Lefortet al., Neuron 61, 301 (2009), DOI: 10.1016/j.neuron.2008.12.020. Crossref, Medline, ISI, Google ScholarF. H. Lopes da Silvaet al., Kybernetik 15, 27 (1974), DOI: 10.1007/BF00270757. Crossref, Medline, ISI, Google ScholarJ. Lübke and D. Feldmeyer, Brain. Struct. Funct. 212, 3 (2007). Crossref, Medline, Google ScholarU. Mitzdorf, Physiol. Rev. 65, 37 (1985). Crossref, Medline, ISI, Google ScholarR. J. Moranet al., Neuroimage 42, 272 (2008), DOI: 10.1016/j.neuroimage.2008.01.025. Crossref, Medline, ISI, Google Scholar Nolsoe K, Nielsen JN, Madsen H, Prediction-based estimating function for diffusion processes with measurement noise. Technical Reports, No. 10, Informatics and Mathematical Modeling, Technical University of Denmark, 2000 . Google ScholarD. H. O'Connor, D. Huber and K. Svoboda, Nature 461, 923 (2009), DOI: 10.1038/nature08539. Crossref, Medline, ISI, Google ScholarT. Ozaki, The local linearization filter with application to nonlinear system identifications, Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach, ed. H. Bozdogan (Kluwer Academic, Dordrecht, 1994) pp. 217–240. Google ScholarG. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 5th edn. (Elsevier Academic Press, Boston, 2005). Google Scholar Pedroso LM, Marrero A, de Arazoza H, Nonlinear parametric model identification using genetic algorithms. Lecture Notes in Computer Science 2687, Springer-Verlag, Heidelberg, pp. 473–480, 2003 . Google ScholarR. R. Poznanski and J. Riera, J. Integr. Neurosci. 5, 273 (2006), DOI: 10.1142/S0219635206001173. Link, Google ScholarJ. Rieraet al., Neuroimage 21, 547 (2004), DOI: 10.1016/j.neuroimage.2003.09.052. Crossref, Medline, ISI, Google ScholarJ. Rieraet al., Hum. Brain. Mapp. 28, 335 (2007), DOI: 10.1002/hbm.20278. Crossref, Medline, ISI, Google ScholarS. Sakata and K. D. Harris, Neuron 64, 404 (2009), DOI: 10.1016/j.neuron.2009.09.020. Crossref, Medline, ISI, Google ScholarV. Solo, Int. J. Contr. 32, 395 (1980), DOI: 10.1080/00207178008922864. Crossref, ISI, Google ScholarR. C. Sotero and N. J. Trujillo-Barreto, Neuroimage 35, 149 (2007), DOI: 10.1016/j.neuroimage.2006.10.027. Crossref, Medline, ISI, Google ScholarR. C. Soteroet al., Neural. Comput. 19, 478 (2007), DOI: 10.1162/neco.2007.19.2.478. Crossref, Medline, ISI, Google ScholarR. C. Sotero and N. J. Trujillo-Barreto, Neuroimage 39, 290 (2008), DOI: 10.1016/j.neuroimage.2007.08.001. Crossref, Medline, ISI, Google ScholarR. C. Soteroet al., J. Comput. Neurosci. 26, 251 (2009), DOI: 10.1007/s10827-008-0109-3. Crossref, Medline, ISI, Google ScholarR. C. Sotero and R. Martinez-Cancino, Neural. Comput. 22, 969 (2010), DOI: 10.1162/neco.2009.04-09-1002. Crossref, Medline, ISI, Google ScholarF. Schweppe, IEEE. Trans. Inf. Theory. 11, 61 (1965), DOI: 10.1109/TIT.1965.1053737. Crossref, ISI, Google ScholarA. M. Thomsonet al., Cereb. Cortex. 12, 936 (2002), DOI: 10.1093/cercor/12.9.936. Crossref, Medline, ISI, Google ScholarA. M. Thomson and C. Lamy, Front. Neurosci. 1, 19 (2007), DOI: 10.3389/neuro.01.1.1.002.2007. Crossref, Medline, ISI, Google ScholarA. M. Thomson, Front. Neuroanat. 4, 1 (2010). Medline, ISI, Google ScholarH. C. Tuckwell and R. Rodriguez, J. Comput. Neurosci. 5, 91 (1998), DOI: 10.1023/A:1008811814446. Crossref, Medline, ISI, Google ScholarP. Valdéset al., Biol. Cybern. 81, 415 (1999). Crossref, Medline, ISI, Google ScholarG. Vaknin, P. G. DiScenna and T. J. Teyler, J. Neurosci. Methods. 24, 131 (1998), DOI: 10.1016/0165-0270(88)90056-8. Crossref, Medline, ISI, Google ScholarN. Weileret al., Nat. Neurosci. 11, 360 (2008), DOI: 10.1038/nn2049. Crossref, Medline, ISI, Google ScholarH. R. Wilson and J. D. Cowan, Biophys. J. 12, 1 (1972), DOI: 10.1016/S0006-3495(72)86068-5. Crossref, Medline, ISI, Google ScholarK. Zhou and P. P. Khargonekar, IEEE. Trans. Automat. Contr. 32, 621 (1987). Crossref, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 19A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordingsRoser Sanchez-Todo, André M. Bastos, Edmundo Lopez-Sola, Borja Mercadal and Emiliano Santarnecchi et al.1 Apr 2023 | NeuroImage, Vol. 270Multivariate connectivity: A brief introduction and an open questionMengting Fang, Craig Poskanzer and Stefano Anzellotti10 January 2023 | Frontiers in Neuroscience, Vol. 16Locally Measured Neuronal Correlates of Functional MRI SignalsAmir Shmuel and Alexander Maier1 January 2023Coding of interceptive saccades in parietal cortex of macaque monkeysJan Churan, Andre Kaminiarz, Jakob C. B. Schwenk and Frank Bremmer1 September 2021 | Brain Structure and Function, Vol. 226, No. 8Linking cortical circuit models to human cognition with laminar fMRIJiajia Yang, Laurentius Huber, Yinghua Yu and Peter A. Bandettini1 Sep 2021 | Neuroscience & Biobehavioral Reviews, Vol. 128Dexmedetomidine – Commonly Used in Functional Imaging Studies – Increases Susceptibility to Seizures in Rats But Not in Wild Type MiceAleksandra Bortel, Roland Pilgram, Ze Shan Yao and Amir Shmuel29 October 2020 | Frontiers in Neuroscience, Vol. 14A rat model of somatosensory-evoked reflex seizures induced by peripheral stimulationAleksandra Bortel, Ze Shan Yao and Amir Shmuel1 Nov 2019 | Epilepsy Research, Vol. 157A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRIXuefei Cao, Björn Sandstede and Xi Luo27 February 2019 | Frontiers in Neuroscience, Vol. 13Design of optimal nonlinear network controllers for Alzheimer's diseaseLazaro M. Sanchez-Rodriguez, Yasser Iturria-Medina, Erica A. Baines, Sabela C. Mallo and Mehdy Dousty et al.24 May 2018 | PLOS Computational Biology, Vol. 14, No. 5The neurogenesis of P1 and N1: A concurrent EEG/LFP studyMichael Bruyns-Haylett, Jingjing Luo, Aneurin J. Kennerley, Sam Harris and Luke Boorman et al.1 Feb 2017 | NeuroImage, Vol. 146Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical ColumnRoberto C. Sotero and Jean Daunizeau1 November 2016 | PLOS Computational Biology, Vol. 12, No. 11Laminar Distribution of Phase-Amplitude Coupling of Spontaneous Current Sources and SinksRoberto C. Sotero, Aleksandra Bortel, Shmuel Naaman, Victor M. Mocanu and Pascal Kropf et al.22 December 2015 | Frontiers in Neuroscience, Vol. 9Modeling the Generation of Phase-Amplitude Coupling in Cortical Circuits: From Detailed Networks to Neural Mass ModelsRoberto C. Sotero1 Jan 2015 | BioMed Research International, Vol. 2015Locally Measured Neuronal Correlates of Functional MRI SignalsAmir Shmuel and Alexander Maier17 September 2015A switching multi-scale dynamical network model of EEG/MEGIván Olier, Nelson J. Trujillo-Barreto and Wael El-Deredy1 Dec 2013 | NeuroImage, Vol. 83Balanced excitation and inhibition: Model based analysis of local field potentialsYing Zheng, Jing Jing Luo, Sam Harris, Aneurin Kennerley and Jason Berwick et al.1 Oct 2012 | NeuroImage, Vol. 63, No. 1Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting stateRoberto C. Sotero and Amir Shmuel1 November 2011 | Journal of Computational Neuroscience, Vol. 32, No. 3BINDING AND SEGMENTATION VIA A NEURAL MASS MODEL TRAINED WITH HEBBIAN AND ANTI-HEBBIAN MECHANISMSFILIPPO CONA, MELISSA ZAVAGLIA, and MAURO URSINO7 April 2012 | International Journal of Neural Systems, Vol. 22, No. 02A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEGF. Cona, M. Zavaglia, M. Massimini, M. Rosanova and M. Ursino1 Aug 2011 | NeuroImage, Vol. 57, No. 3 Recommended Vol. 09, No. 04 Metrics History Received 1 August 2010 Accepted 9 November 2010 KeywordsNeural mass modellocal field potentialsLFPcurrent-source densityCSDeffective connectivitycortical columncortical layersPDF download

Referência(s)