Artigo Acesso aberto Revisado por pares

Onset of cryptic vicariance in the Japanese dormouse Glirulus japonicus (Mammalia, Rodentia) in the Late Tertiary, inferred from mitochondrial and nuclear DNA analysis

2007; Wiley; Volume: 45; Issue: 2 Linguagem: Inglês

10.1111/j.1439-0469.2006.00388.x

ISSN

1439-0469

Autores

Shumpei P. Yasuda, Shusaku Minato, Koichiro Tsuchiya, Hitoshi Suzuki,

Tópico(s)

Yersinia bacterium, plague, ectoparasites research

Resumo

Journal of Zoological Systematics and Evolutionary ResearchVolume 45, Issue 2 p. 155-162 Onset of cryptic vicariance in the Japanese dormouse Glirulus japonicus (Mammalia, Rodentia) in the Late Tertiary, inferred from mitochondrial and nuclear DNA analysis Descubrimiento del comienzo de vicarianza aparentemente críptica en el Lirón japonés Glirulus japonicus desde el terciario tardío inferido mediante análisis de ADN mitocondrial y nuclear. S. P. Yasuda, S. P. Yasuda Laboratory of Ecology and Genetics, Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, JapanSearch for more papers by this authorS. Minato, S. Minato KEEP Dormouse-Museum, Hokuto, JapanSearch for more papers by this authorK. Tsuchiya, K. Tsuchiya Laboratory of Wild Animals, Department of Animal Sciences, Tokyo University of Agriculture, Atsugi, Japan Applied Biology Co. Ltd., Minato-ku, Tokyo, JapanSearch for more papers by this authorH. Suzuki, H. Suzuki Laboratory of Ecology and Genetics, Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, JapanSearch for more papers by this author S. P. Yasuda, S. P. Yasuda Laboratory of Ecology and Genetics, Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, JapanSearch for more papers by this authorS. Minato, S. Minato KEEP Dormouse-Museum, Hokuto, JapanSearch for more papers by this authorK. Tsuchiya, K. Tsuchiya Laboratory of Wild Animals, Department of Animal Sciences, Tokyo University of Agriculture, Atsugi, Japan Applied Biology Co. Ltd., Minato-ku, Tokyo, JapanSearch for more papers by this authorH. Suzuki, H. Suzuki Laboratory of Ecology and Genetics, Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, JapanSearch for more papers by this author First published: 11 April 2007 https://doi.org/10.1111/j.1439-0469.2006.00388.xCitations: 11 Authors' addresses: Shumpei P. Yasuda, Hitoshi Suzuki (for correspondence), Laboratory of Ecology and Genetics, Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan. E-mail: [email protected], [email protected]; Shusaku Minato, KEEP Dormouse-museum, Hokuto 407-0311, Japan. E-mail: [email protected]; Kimiyuki Tsuchiya, Applied Biology Co. Ltd, 4-12-3 Minami-Aoyama, Minato-ku, Tokyo 107-0062, Japan. E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstracten The sequences of the mitochondrial cytochrome b gene and restriction site variation in the spacer region of the nuclear ribosomal RNA gene [rDNA-restriction fragment length polymorphism (RFLP)] were analysed to determine the phylogeographic structure of the Japanese dormouse (Glirulus japonicus), which is threatened by deforestation and has been designated an endangered species in Japan. The phylogenetic tree of cytochrome b grouped G. japonicus into six geographical populations: north-eastern Honshu (I), central Honshu (II), west-central Honshu/Kii Peninsula (III), western Honshu (IV), Shikoku (V), and westernmost Honshu/Kyushu (VI); the genetic distances among these groups suggest divergence in the Late Tertiary. The lineage of group VI was located at the basal position in the phylogenetic tree, followed by the radiation of the other lineages. An rDNA-RFLP analysis of 15 restriction sites roughly supported such genetic isolation; groups I, II, III, IV, V and VI have five, two, one, one, one and four unique restriction sites, respectively, revealing four geographic groups as cryptic species: I, II, III + IV + V and VI. Our results reveal the ancient divergences of the local population, which has a complicated evolutionary history, and should be useful in developing a framework for the conservation of this species. Resumenes Secuencias del gen mitocondrial citocromo b y variaciones en sitios de restricción en la región espaciadora del gen nuclear de ARN ribosomal [rARN-fragmentos de restricción de polimorfismos de longitud (RFLP)] fueron analizados para determinar la estructura filogeográfica del lirón japonés (Glirulus japonicus), el cual es amenazado por deforestación y ha sido designado como especie en peligro de extinción en Japón. El árbol filogenético usando el gen mitocondrial citocromo b revelo que individuos de las especie G. japonicus están divididos en seis regiones geográficas: (I) el Noreste de la isla de Honshu, (II) el centro de la isla de Honshu, (III) el oeste central de la isla de Honshu/la península de Kii, (IV) el oeste de la isla de Honshu, (V) la isla de Shikoku y (VI) la región mas al oeste de las islas de Honshu y Kyushu. Las distancias genéticas entre estos grupos sugieren que la divergencia entre ellos ocurrió durante el Terciario tardío. El grupo VI ocupo el punto mas basal del árbol filogenético, seguida de la radiación de los otros grupos. Nuestro análisis de rADN-RFLP de 15 sitios de restricción corroboraron los resultados del gen mitocondrial respecto al aislamiento genético: los grupos I, II, III, IV, V y VI poseen cinco, dos, uno, uno, uno y cuatro sitios de restricción únicos, respectivamente. Estos resultados permitieron reconocer cuatro grupos geográficos, I, II, III + IV + V y VI como una especie críptica. Los datos presentados acá revelan la divergencia ancestral de las poblaciones de Japón, las cuales presentan una complicada historia evolutiva. Estos datos serán de gran valor al momento de desarrollar estrategias de conservación de esta especie. References Abe H, Ishii N, Itoo T, Kaneko Y, Maeda K, Miura S, Yoneda M (2005) A Guide to the Mammals of Japan. Tokai University Press, Tokyo. Arnheim N (1983) Concerted evolution of multigene families. In: M Nei, RK Koehn (eds), Evolution of Genes and Proteins. Sinauer Associates, Sunderland, MA, pp. 38– 61. Avise JC (2000) Phylogeography: the History and Formation of Species. Harvard University Press, Cambridge. Bentz S, Montgelard C (1999) Systematic position of the African dormouse Graphiurus (Rodentia, Gliridae) assessed from cytochrome b and 12s rRNA mitochondrial genes. J Mammal Evol 6: 67– 83. Berger JP, Reichenbacher B, Becker D, Grimm M, Grimm K, Picot L, Storni A, Pirkenseer C, Schaefer A (2005) Eocene–Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). Int J Earth Sci 94: 711– 731. Corbet GB, Hill JE (1991) A World List of Mammalian Species, 3rd edn. Oxford University Press, London. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15: 290– 295. Daams R (1999) Family Gliridae. In: G Rössner, K Heissig (eds), The Miocene Land Mammals of Europe. Pfeil Verlag, München, pp. 301– 318. Daams R, De Bruijn H (1995) A classification of the Gliridae (Rodentia) on the basis of dental morphology. Hystrix (n.s.) 6: 3– 50. Dobson M, Kawamura Y (1998) Origin of the Japanese land mammal fauna: allocation of extant species to historically based categories. Quaternary Res Tokyo 37: 385– 395. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299: 111– 117. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368– 376. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783– 791. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, WA. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge. Futuyma DJ (1986) Evolutionary Biology, 2nd edn. Sinauer Associates, Sunderland. Harada M, Ando A, Tsuchiya K, Koyasu K (2001) Geographical variations in chromosomes of the greater Japanese shrew-mole, Urotrichus talpoides (Mammalia: Insectivora). Zool Sci 18: 433– 442. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58: 247– 276. Iwasa MA, Suzuki H (2002) Evolutionary networks of maternal and paternal gene lineages in voles (Eothenomys) endemic to Japan. J Mammal 83: 852– 865. Iwasa MA, Suzuki H (2003) Intra- and interspecific genetic complexities of two Eothenomys species in Honshu, Japan. Zool Sci 20: 1305– 1313. Kawamura Y (1989) Quaternary Rodent Faunas in the Japanese Islands (Part 2). Mem Fac Sci Kyoto Univ Series Geol Mineral 54: 1– 235. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111– 120. Mammalogical Society of Japan (1997) Red list of Japanese Mammals. Bun-ichi Sogo Press, Tokyo (in Japanese). Minato S (1986) Ecology of the Japanese dormouse. In: DW Macdonald (ed.), The Encyclopedia of Animals Vol. 5. Heibonsha Limited, Publishers, Tokyo, pp. 96– 97 (in Japanese). Montgelard C, Matthee CA, Robinson TJ (2003) Molecular systematics of dormice (Rodentia: Gliridae) and the radiation of Graphiurus in Africa. Proc Roy Soc Lond B Bio 270: 1947– 1955. Nagata J, Masuda R, Tamate HB, Hamasaki S, Ochiai K, Asada M, Tatsuzawa S, Suda K, Tado H, Yoshida MC (1999) Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Mol Phylogenet Evol 13: 511– 519. Nakajima F (2001) Dormice in Japan. Shinano Mainichi Press, Nagano (in Japanese). Nakama S, Tsuchiya K (2006) Geographic variation of the mandible in the Japanese dormouse Glirulus japonicus. Animate Spec Number 1: 75– 77 (in Japanese). Okamoto M (1999) Phylogeny of Japanese moles inferred from mitochondrial CO1 gene sequences. In: Y Yokohata, S Nakamura (eds), Recent Advances in the Biology of Japanese Insectivora. Hiba Society of Natural History, Shobara, pp. 21– 27. Oshida T, Tsuchiya K, Suzuki H, Yanagawa H, Yoshida MC (1999) Variation of the nucleolus organizer regions within the Japanese dormouse Glirulus japonicus Schinz (Rodentia, Muscardinidae). Chromosome Sci 3: 29– 32. Oshida T, Ikeda K, Yamada K, Masuda R (2001) Phylogeography of the Japanese giant flying squirrel, Petaurista leucogenys, based on mitochondrial DNA control region sequences. Zool Sci 18: 107– 114. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817– 818. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406– 425. Sato JJ, Wolsan M, Suzuki H, Hosoda T, Yamaguchi Y, Hiyama K, Kobayashi M, Minami S (2006) Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of Pinnipedia: single origin with affinity to Musteloidea. Zool Sci 23: 125– 146. Shibata F, Kawamichi T, Nishibayashi K (2004) Daily rest-site selection and use by the Japanese dormouse. J Mammal 85: 30– 37. Suzuki H, Kurihara Y (1994) Genetic variation of Ribosomal RNA in the house mouse, Mus musculus. In: K Moriwaki, T Shiroishi, H Yonekawa (eds), Genetics in Wild Mice. Japan Sci Soc Press, Tokyo, pp. 107– 119. Suzuki H, Kawamoto Y, Takenaka O, Munechika I, Hori H, Sakurai S (1994a) Phylogenetic relationships among Homo sapiens and related species based on restriction site variation in rDNA spacers. Biochem Genet 32: 257– 269. Suzuki H, Tsuchiya K, Sakaizumi M, Wakana S, Sakurai S (1994b) Evolution of restriction sites of Ribosomal DNA in natural populations of the field mouse, Apodemus speciosus. J Mol Evol 38: 107– 112. Suzuki H, Wakana S, Yonekawa H, Moriwaki K, Sakurai S, Nevo E (1996) Variations in ribosomal DNA and mitochondrial DNA among chromosomal species of subterranean mole rats. Mol Biol Evol 13: 85– 92. Suzuki H, Minato S, Sakurai S, Tsuchiya K, Fokin IM (1997) Phylogenetic position and geographic differentiation of the Japanese dormouse, Glirulus japonicus, revealed by variations among rDNA, mtDNA and the Sry gene. Zool Sci 14: 167– 173. Suzuki H, Sato JJ, Tsuchiya K, Luo J, Zhang YP, Wang YX, Jiang XL (2003) Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biol J Linn Soc 80: 469– 481. Suzuki H, Yasuda SP, Sakaizumi M, Wakana S, Motokawa M, Tsuchiya K (2004) Differential geographic patterns of mitochondrial DNA variation in two sympatric species of Japanese wood mice, Apodemus speciosus and A. argenteus. Genes Genet Syst 79: 165– 176. Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MA. Swofford DL, Olsen GJ (1990) Phylogenetic reconstruction. In: DM Hills, C Moritz (eds), Molecular Systematics. Sinauer Associates, Sunderland, MA, pp. 411– 501. Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12: 823– 833. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512– 526. Tsuchiya K, Moriwaki K, Yosida TH (1973) Cytogenetical survey in wild populations of Japanese wood mouse, Apodemus speciosus and its breeding. Exp Anim Tokyo 22: 221– 229. Tsuchiya K, Suzuki H, Shinohara A, Harada M, Wakana S, Sakaizumi M, Han SH, Lin LK, Kryukov AP (2000) Molecular phylogeny of East Asian moles inferred from the sequence variation of the mitochondrial cytochrome b gene. Genes Genet Syst 75: 17– 24. Wu WY, Ye J, Bi SD, Meng J (2000) The discovery of late Oligocene dormice from China. Vertebr PalAsiat 38: 36– 42. Yasuda SP, Vogel P, Tsuchiya K, Han SH, Lin LK, Suzuki H (2005) Phylogeographic patterning of mtDNA in a widely distributed Eurasian temperate rodent, the harvest mouse Micromys minutus (Muridae, Rodentia), suggests dramatic cycles of range contraction and expansion during the mid- to late Pleistocene. Can J Zool 83: 1411– 1420. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: V Bryson, HJ Vogel (eds), Evolving Genes and Proteins. Academic Press, New York, pp. 97– 166. Citing Literature Volume45, Issue2May 2007Pages 155-162 ReferencesRelatedInformation

Referência(s)