Artigo Revisado por pares

Two-step degradation of high-density polyethylene during multiple extrusion

1999; Wiley; Volume: 74; Issue: 6 Linguagem: Inglês

10.1002/(sici)1097-4628(19991107)74

ISSN

1097-4628

Autores

Edina Epacher, János Tolvéth, Klaus Stoll, Béla Pukánszky,

Tópico(s)

Polymer crystallization and properties

Resumo

Journal of Applied Polymer ScienceVolume 74, Issue 6 p. 1596-1605 Two-step degradation of high-density polyethylene during multiple extrusion Edina Epacher, Edina Epacher Technical University of Budapest, Department of Plastics and Rubber Technology, H-1521 Budapest, P.O. Box 92, Hungary Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, HungarySearch for more papers by this authorJános Tolvéth, János Tolvéth Technical University of Budapest, Department of Plastics and Rubber Technology, H-1521 Budapest, P.O. Box 92, Hungary Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, HungarySearch for more papers by this authorKlaus Stoll, Klaus Stoll Polymer Additives, Clariant Huningue SA, 68331 Huningue CEDEX, BP 149, FranceSearch for more papers by this authorBéla Pukánszky, Corresponding Author Béla Pukánszky Technical University of Budapest, Department of Plastics and Rubber Technology, H-1521 Budapest, P.O. Box 92, Hungary Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, HungaryTechnical University of Budapest, Department of Plastics and Rubber Technology, H-1521 Budapest, P.O. Box 92, Hungary===Search for more papers by this author Edina Epacher, Edina Epacher Technical University of Budapest, Department of Plastics and Rubber Technology, H-1521 Budapest, P.O. Box 92, Hungary Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, HungarySearch for more papers by this authorJános Tolvéth, János Tolvéth Technical University of Budapest, Department of Plastics and Rubber Technology, H-1521 Budapest, P.O. Box 92, Hungary Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, HungarySearch for more papers by this authorKlaus Stoll, Klaus Stoll Polymer Additives, Clariant Huningue SA, 68331 Huningue CEDEX, BP 149, FranceSearch for more papers by this authorBéla Pukánszky, Corresponding Author Béla Pukánszky Technical University of Budapest, Department of Plastics and Rubber Technology, H-1521 Budapest, P.O. Box 92, Hungary Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, HungaryTechnical University of Budapest, Department of Plastics and Rubber Technology, H-1521 Budapest, P.O. Box 92, Hungary===Search for more papers by this author First published: 24 August 1999 https://doi.org/10.1002/(SICI)1097-4628(19991107)74:6 3.0.CO;2-DCitations: 32AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Ensuing our recent studies on polyethylene stabilization,1,2 further multiple extrusion experiments were carried out with a high-density polyethylene (HDPE) polymer containing various amounts of a sterically hindered phenolic antioxidant. Discoloration, thermoxidative stability, and melt flow index (MFI) retention were measured by standard techniques; the functional group content of the polymer was determined by Fourier transform infrared (FTIR) spectroscopy, and rheological, as well as mechanical properties, were also measured. The results indicated that degradation and stabilization reactions take place according to two different mechanisms in the first and subsequent processing steps, respectively. Color development could be described well by the simple first-order overall reaction kinetics proposed earlier, and color change could be related to the stability of the polymer. The existence of general correlations among the properties proved that all chemical reactions are interrelated. The reactions of the stabilizer lead to color development, while those of the polymer to a modification of its molecular architecture, which determines the rheological and mechanical characteristics of the product. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1596–1605, 1999 REFERENCES 1 Epacher, E.; Fekete, E.; Gahleitner, M.; Pukánszky, B. Polym Degrad Stab 1999, 63, 489. 10.1016/S0141-3910(98)00078-0 CASWeb of Science®Google Scholar 2 Epacher, E.; Fekete, E.; Gahleitner, M.; Pukánszky, B. Polym Degrad Stab 1999, 63, 499. 10.1016/S0141-3910(98)00079-2 CASWeb of Science®Google Scholar 3 Moss, S.; Zweifel, H. Polym Degrad Stab 1989, 25, 217. 10.1016/S0141-3910(89)81009-2 CASWeb of Science®Google Scholar 4 Drake, W. O.; Pauquet, J. R.; Todesco, R. V.; Zweifel, H. Angew Makromol Chem 1990, 176/177, 215. 10.1002/apmc.1990.051760119 CASWeb of Science®Google Scholar 5 Hinsken, H.; Moss, S.; Pauquet, J. R.; Zweifel, H. Polym Degrad Stab 1991, 34, 279. 10.1016/0141-3910(91)90123-9 CASWeb of Science®Google Scholar 6 Van Prooyen, M.; Bremner, T.; Rudin, A. Polym Eng Sci 1994, 34, 570. 10.1002/pen.760340705 CASWeb of Science®Google Scholar 7 Wu, C. J Appl Polym Sci 1994, 54, 969. 10.1002/app.1994.070540715 CASWeb of Science®Google Scholar 8 Chakraborty, K. B.; Scott, G. Eur Polym J 1977, 13, 731. 10.1016/0014-3057(77)90074-X CASWeb of Science®Google Scholar 9 Rideal, G. R.; Padget, J. C. J Polym Sci Polym Symp 1976, 57, 1. 10.1002/polc.5070570103 CASGoogle Scholar 10 Holmström, A.; Sörvik, E. M. J Polym Sci Polym Symp 1976, 57, 33. 10.1002/polc.5070570106 CASGoogle Scholar 11 Shenoy, A. V.; Saini, D. R. Adv Polym Technol 1986, 6, 1. 10.1002/adv.1986.060060101 CASGoogle Scholar 12 Spivack, J. D.; Pastor, S. D.; Patel, A.; Steinhubel, L. P. Polym Prepr 1984, 25(1), 72. CASGoogle Scholar 13 Klemchuk, P. P.; Horng, P.-L. Polym Degrad Stab 1984, 7, 131. 10.1016/0141-3910(84)90111-3 CASWeb of Science®Google Scholar 14 Henman, T. J. in Development in Polymer Stabilisation-1; G. Scott, Ed.; Applied Science Publishers: London, UK, 1979; p 39. Google Scholar 15 Scott, G.; Yusoff, F. Polym Degrad Stab 1980–81, 3, 13. 10.1016/0141-3910(80)90004-X CASWeb of Science®Google Scholar 16 Scheirs, J.; Bigger, S. W.; Delatycki, O. Polymer 1989, 30, 2080. 10.1016/0032-3861(89)90298-X CASWeb of Science®Google Scholar 17 Pospisil, J. Adv Polym Sci 1980, 36, 69. 10.1007/3-540-10204-3_3 CASWeb of Science®Google Scholar 18 Bremner, T.; Rudin, A.; Cook, D. G. J Appl Polym Sci 1990, 41, 1617. 10.1002/app.1990.070410721 CASWeb of Science®Google Scholar 19 Heitmiller, R. F.; Naar, R. Z.; Zabusky, H. H. J Appl Polym Sci 1964, 8, 873. 10.1002/app.1964.070080226 CASGoogle Scholar 20 Sugimura, Y.; Usami, T.; Nagaya, T.; Tsuge, S. Macromolecules 1981, 14, 1787. 10.1021/ma50007a034 CASWeb of Science®Google Scholar 21 Drott, E. E.; Mendelson, R. A. J Polym Sci Part A-2 1970, 8, 1373. 10.1002/pol.1970.160080809 CASWeb of Science®Google Scholar 22 Holmström, A.; Sörvik, E. M. J Appl Polym Sci 1974, 18, 779. 10.1002/app.1974.070180315 CASWeb of Science®Google Scholar 23 Holtzen, D. A. Plast Compound 1991, Nov/Dec, 38. Google Scholar 24 Pearson, L. T.; Sousa, M. Polym Eng Sci 1992, 32, 475. 10.1002/pen.760320704 CASWeb of Science®Google Scholar 25 Kovárová-Lerchová, J.; Pospísil, J. Eur Polym J 1977, 13, 975. 10.1016/0014-3057(77)90169-0 CASWeb of Science®Google Scholar 26 Taimr, L.; Pospísil, J. Angew Makromol Chem 1973, 28, 13. 10.1002/apmc.1973.050280102 CASWeb of Science®Google Scholar 27 Holmström, A.; Sörvik, E. M. J Polym Sci Polym Chem Ed 1978, 16, 2555. 10.1002/pol.1978.170161012 CASWeb of Science®Google Scholar 28 Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends Polym Sci 1997, 5, 249. Google Scholar 29 Shlyapnikov, Yu. A.; Tyuleneva, N. K. Polym Degrad Stab 1997, 56, 311. 10.1016/S0141-3910(96)00211-X CASWeb of Science®Google Scholar 30 Shlyapnikov, Yu. A.; Serenkova, I. A. Polym Degrad Stab 1992, 35, 67. 10.1016/0141-3910(92)90137-T CASWeb of Science®Google Scholar 31 Shlyapnikov, Yu. A.; Tyuleneva, N. K. Oxidation Commun 1997, 20, 434. CASWeb of Science®Google Scholar 32 Mason, L. R.; Doyle, T. E.; Reynolds, A. B. J Appl Polym Sci 1993, 50, 1493. 10.1002/app.1993.070500902 CASWeb of Science®Google Scholar 33 Kharitonov, V. V.; Psikha, B. L.; Zaikov, G. E. J Chem Biochem Kinetics 1997, 3, 201. CASGoogle Scholar 34 El'darov, E. G.; Mamedov, T. V.; Gol'dberg, V. M.; Zaikov, G. E. Polym Degrad Stab 1996, 51, 271. 10.1016/0141-3910(95)00160-3 CASWeb of Science®Google Scholar 35 Barr-Kumarakulasinghe, S. A. Polymer 1994, 35, 995. 10.1016/0032-3861(94)90944-X CASWeb of Science®Google Scholar 36 Gugumus, F. Polym Degrad Stab 1996, 52, 145. 10.1016/0141-3910(95)00227-8 CASWeb of Science®Google Scholar 37 Gugumus, F. in Developments in Polymer Stabilization, Vol. 8; G. Scott, Ed.; Applied Science Publishers: London, UK, 1988; p 241. Google Scholar 38 Pauquet, J. R.; Todesco, R. V.; Drake, W. O. Paper presented at 42th International Wire and Cable Symposium, St. Louis, Nov 15–18, 1993. Google Scholar 39 Drake, W. O.; Cooper, K. Proceedings of the 8th SPE International Conference on Polyolefins, SPE, Houston, TX, 1993; p 417. Google Scholar 40 Zweifel, H. Stabilization of Polymer Materials; Springer-Verlag: Berlin, 1998. 10.1007/978-3-642-80305-5 Google Scholar Citing Literature Volume74, Issue67 November 1999Pages 1596-1605 ReferencesRelatedInformation

Referência(s)