Validation of Serum Markers for Blood-Brain Barrier Disruption in Traumatic Brain Injury
2009; Mary Ann Liebert, Inc.; Volume: 26; Issue: 9 Linguagem: Inglês
10.1089/neu.2008.0738
ISSN1557-9042
AutoresBrian Blyth, Arash Farhavar, Christopher Gee, Brendan Hawthorn, Hua He, Akshata Nayak, Veit Stöcklein, Jeffrey J. Bazarian,
Tópico(s)Traumatic Brain Injury Research
ResumoThe blood-brain barrier (BBB), which prevents the entry into the central nervous system (CNS) of most water-soluble molecules over 500 Da, is often disrupted after trauma. Post-traumatic BBB disruption may have important implications for prognosis and therapy. Assessment of BBB status is not routine in clinical practice because available techniques are invasive. The gold-standard measure, the cerebrospinal fluide (CSF)-serum albumin quotient (QA), requires the measurement of albumin in CSF and serum collected contemporaneously. Accurate, less invasive techniques are necessary. The objective of this study was to evaluate the relationship between QA and serum concentrations of monomeric transthyretin (TTR) or S100B. Nine subjects with severe traumatic brain injury (TBI; Glasgow Coma Scale [GCS] score ≤ 8) and 11 subjects with non-traumatic headache who had CSF collected by ventriculostomy or lumbar puncture (LP) were enrolled. Serum and CSF were collected at the time of LP for headache subjects and at 12, 24, and 48 h after ventriculostomy for TBI subjects. The QA was calculated for all time points at which paired CSF and serum samples were available. Serum S100B and TTR levels were also measured. Pearson's correlation coefficient and area under the receiver operating characteristic (ROC) curve were used to determine the relationship between the serum proteins and QA. Seven TBI subjects had abnormal QA's indicating BBB dysfunction. The remaining TBI and control subjects had normal BBB function. No significant relationship between TTR and QA was found. A statistically significant linear correlation between serum S100B and QA was present (r = 0.432, p = 0.02). ROC analysis demonstrated a significant relationship between QA and serum S100B concentrations at 12 h after TBI (AUC = 0.800; SE 0.147, 95% CI 0.511–1.089). Using an S100B concentration cutoff of 0.027 ng/ml, specificity for abnormal QA was 90% or higher at each time point. We conclude that serum S100B concentrations accurately indicate BBB dysfunction at 12 h after TBI.
Referência(s)