Gut microbiota changes in rainbow trout, O ncorhynchus mykiss ( W albaum), during organic acid feed supplementation and Y ersinia ruckeri infection
2012; Wiley; Volume: 36; Issue: 6 Linguagem: Inglês
10.1111/jfd.12047
ISSN1365-2761
AutoresRzgar M. Jaafar, Per W. Kania, Anna Larsen, Dennis Sandris Nielsen, Belén Fouz, Craig L. Browdy, Kurt Buchmann,
Tópico(s)Pharmaceutical and Antibiotic Environmental Impacts
ResumoJournal of Fish DiseasesVolume 36, Issue 6 p. 599-606 Short Communication Gut microbiota changes in rainbow trout, Oncorhynchus mykiss (Walbaum), during organic acid feed supplementation and Yersinia ruckeri infection R M Jaafar, R M Jaafar Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, DenmarkSearch for more papers by this authorP W Kania, P W Kania Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, DenmarkSearch for more papers by this authorA H Larsen, A H Larsen BioMar A/S, Brande, DenmarkSearch for more papers by this authorD S Nielsen, D S Nielsen Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, DenmarkSearch for more papers by this authorB Fouz, B Fouz Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Valencia, SpainSearch for more papers by this authorC Browdy, C Browdy Novus International, St. Charles, MO, USASearch for more papers by this authorK Buchmann, Corresponding Author K Buchmann Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark Correspondence K Buchmann, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark (e-mail: [email protected])Search for more papers by this author R M Jaafar, R M Jaafar Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, DenmarkSearch for more papers by this authorP W Kania, P W Kania Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, DenmarkSearch for more papers by this authorA H Larsen, A H Larsen BioMar A/S, Brande, DenmarkSearch for more papers by this authorD S Nielsen, D S Nielsen Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, DenmarkSearch for more papers by this authorB Fouz, B Fouz Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Valencia, SpainSearch for more papers by this authorC Browdy, C Browdy Novus International, St. Charles, MO, USASearch for more papers by this authorK Buchmann, Corresponding Author K Buchmann Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark Correspondence K Buchmann, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark (e-mail: [email protected])Search for more papers by this author First published: 20 November 2012 https://doi.org/10.1111/jfd.12047Citations: 17Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Ai Q., Mai K., Zhang L., Tan B. & Zhang W. (2007) Effects of dietary β-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish & Shellfish Immunology 22, 394–402. 10.1016/j.fsi.2006.06.011 CASPubMedWeb of Science®Google Scholar Austin B. (2006) The bacterial microflora of fish, revised. The Scientific World Journal 6, 934–945. 10.1100/tsw.2006.181 CASWeb of Science®Google Scholar Bagni M., Romano N., Finoia M.G., Abelli L. & Scapigliati G. (2005) Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish & Shellfish Immunology 18, 311–325. 10.1016/j.fsi.2004.08.003 CASPubMedWeb of Science®Google Scholar Bakke-McKellep A.M., Penn M.H., Salas P.M., Refstie S., Sperstad S., Landsverk T., Ringø E. & Krogdahl Å. (2007) Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). British Journal of Nutrition 97, 699–713. 10.1017/S0007114507381397 CASPubMedWeb of Science®Google Scholar Balcázar J.L., Blas I.D., Ruiz-Zarzuela I., Vendrell D., Calvo A.C., Márquez I., Gironés O. & Muzquiz J.L. (2007) Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). British Journal of Nutrition 97, 522–527. 10.1017/S0007114507432986 CASPubMedWeb of Science®Google Scholar Bates J.M., Mittge E., Kuhlman J., Baden K.N., Cheesman S. & Guillemin K. (2006) Distinct signals from the microbiota promote different aspects of zebra fish gut differentiation. Developmental Biology 297, 374–386. 10.1016/j.ydbio.2006.05.006 CASPubMedWeb of Science®Google Scholar Biziulevicius G.A. (2004) Nutrition discussion forum. British Journal of Nutrition 92, 1009–1012. 10.1079/BJN20041270 PubMedWeb of Science®Google Scholar Broom L.J., Miller H.M., Kerr K.G. & Knapp J.S. (2006) Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets. Research in Veterinary Science 80, 45–54. 10.1016/j.rvsc.2005.04.004 CASPubMedWeb of Science®Google Scholar Chettri J.K., Holten-Andersen L., Raida M.K., Kania P.W. & Buchmann K. (2011) PAMP induced expression of immune relevant genes in head kidney leukocytes of rainbow trout (Oncorhynchus mykiss). Developmental and Comparative Immunology 35, 476–482. 10.1016/j.dci.2010.12.001 CASPubMedWeb of Science®Google Scholar Deshmukh S., Raida M.K., Dalsgaard I., Chettri J.K., Kania P.W. & Buchmann K. (2012) Comparative protection of two different commercial vaccines against Yersinia ruckeri serotype O1 and biotype 2 in rainbow trout (Oncorhynchus mykiss). Veterinary Immunology & Immunopathology 145, 379–385. 10.1016/j.vetimm.2011.12.014 CASPubMedWeb of Science®Google Scholar Dimitroglou A., Merrifield D.L., Moate R., Davies S.J., Spring P., Sweetman J. & Bradley G. (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Animal Science 87, 3226–3234. 10.2527/jas.2008-1428 CASPubMedWeb of Science®Google Scholar Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E. & Relman D.A. (2005) Diversity of the human intestinal microbial flora. Science 308, 1635–1638. 10.1126/science.1110591 PubMedWeb of Science®Google Scholar Engstad R.E., Robertsen B. & Frivold E. (1992) Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish & Shellfish Immunology 2, 287–297. 10.1016/S1050-4648(06)80033-1 Google Scholar Fernández L., Méndez J. & Guijarro J.M. (2007) Molecular virulence mechanisms of the fish pathogen Yersinia ruckeri. Veterinary Microbiology 125, 1–10. 10.1016/j.vetmic.2007.06.013 CASPubMedWeb of Science®Google Scholar Fouz B., Zarza C. & Amaro C. (2006) First description of non-motile Yersinia ruckeri serovar I strains causing diseases in rainbow trout, Oncorhynchus mykiss (Waldbaum), cultured in Spain. Journal of Fish Diseases 29, 339–346. 10.1111/j.1365-2761.2006.00723.x CASPubMedWeb of Science®Google Scholar Fry J. (2000) Bacterial diversity and unculturables. Microbiology Today 27, 186–188. Google Scholar Fujiwara R., Watanabe J. & Sonoyama K. (2008) Assessing changes in composition of intestinal microbiota in neonatal BALB/c mice through cluster analysis of molecular markers. British Journal of Nutrition 99, 1174–1177. 10.1017/S0007114507862349 CASPubMedWeb of Science®Google Scholar Fushuku S. & Fukuda K. (2008) Gender differences in the composition of faecal flora in laboratory mice, as detected by denaturing gradient gel electrophoresis (DGGE). Experimental Animals 57, 489–493. 10.1538/expanim.57.489 CASPubMedWeb of Science®Google Scholar Gómez G.D. & Balcázar J.L. (2007) A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology 52, 145–154. 10.1111/j.1574-695X.2007.00343.x CASPubMedWeb of Science®Google Scholar González C.J., López-Diáz T.M., García-López M.L., Prieto M. & Otero A. (1999) Bacterial microflora of wild brown trout (Salmo trutta), wild pike (Esox lucius), and aquacultured rainbow trout (Oncorhynchus mykiss). Journal of Food Protection 62, 1270–1277. 10.4315/0362-028X-62.11.1270 CASPubMedWeb of Science®Google Scholar Gunal M., Yayli G., Kaya O., Karahan N. & Sulak O. (2006) The effect of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. International Journal of Poultry Science 5, 149–155. 10.3923/ijps.2006.149.155 Google Scholar Hovda M.B., Lunestad B.T., Fontanillas R. & Rosnes J.T. (2007) Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture 272, 581–588. 10.1016/j.aquaculture.2007.08.045 CASWeb of Science®Google Scholar Huber I., Spanggaard B., Appel K.F., Rossen L., Nielsen T. & Gram L. (2004) Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology 96, 117–132. 10.1046/j.1365-2672.2003.02109.x CASPubMedWeb of Science®Google Scholar Hufeldt M.R., Nielsen D.S., Vogensen F.K., Midtvedt T. & Hansen A.K. (2010a) Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice. Laboratory Animals 44, 283–289. 10.1258/la.2010.010058 CASPubMedWeb of Science®Google Scholar Hufeldt M.R., Nielsen D.S., Vogensen F.K., Midtvedt T. & Hansen A.K. (2010b) Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comparative Medicine 60, 336–342. CASPubMedWeb of Science®Google Scholar Ispir U. & Dorucu M. (2010) Effect of immersion booster vaccination with Yersinia ruckeri extracellular products (ECP) on rainbow trout Oncorhynchus mykiss. International Aquatic Research 2, 127–130. Google Scholar Jeney G., Galeotti M., Volpatti D. & Anderson D.P. (1997) Prevention of stress in rainbow trout (Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture 154, 1–15. 10.1016/S0044-8486(97)00042-2 CASWeb of Science®Google Scholar Kim D. & Austin B. (2006) Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish & Shellfish Immunology 21, 513–524. 10.1016/j.fsi.2006.02.007 CASPubMedWeb of Science®Google Scholar Kim D.H., Brunt J. & Austin B. (2007) Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). Journal of Applied Microbiology 102, 1654–1664. 10.1111/j.1365-2672.2006.03185.x CASPubMedWeb of Science®Google Scholar Ley R.E., Peterson D.A. & Gordon J.I. (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848. 10.1016/j.cell.2006.02.017 CASPubMedWeb of Science®Google Scholar Licht T.R., Hansen M., Poulsen M. & Dragsted L.O. (2006) Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota. Bio Medicine Central Microbiology 6, 98. PubMedWeb of Science®Google Scholar Liu Y., Zhou Z., Yao B., Shi P., He S., Hølvold L.B. & Ringø E. (2008) Effect of intraperitoneal injection of immunostimulatory substances on allochthonous gut microbiota of Atlantic salmon (Salmo salar L.) determined using denaturing gradient gel electrophoresis. Aquaculture Research 39, 635–646. 10.1111/j.1365-2109.2008.01934.x CASWeb of Science®Google Scholar Macpherson A.J. & Harris N.L. (2004) Interactions between commensal intestinal bacteria and the immune system. Nature Reviews Immunology 4, 478–485. 10.1038/nri1373 CASPubMedWeb of Science®Google Scholar Matsuyama H., Mangindaan R.E.P. & Yano T. (1992) Protective effect of schizophyllan and scleroglucan against Streptococcus sp. infection in yellowtail (Seriola quinqueradiata). Aquaculture 101, 197–203. 10.1016/0044-8486(92)90023-E CASWeb of Science®Google Scholar Merrifield D.L., Dimitroglou A., Bradley G., Baker R.T.M. & Davies S.J. (2009) Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 32, 755–766. 10.1111/j.1365-2761.2009.01052.x CASPubMedWeb of Science®Google Scholar Misra C.K., Das B.K., Pradhan J., Pattnaik P. & Sethi S. (2004) Changes in lysosomal enzyme activity and protection against Vibrio infection in Macrobrachium rosenbergii (De Man) post larvae after bath immunostimulation with β-glucan. Fish & Shellfish Immunology 17, 389–395. 10.1016/j.fsi.2004.04.008 CASPubMedWeb of Science®Google Scholar Misra C.K., Das B.K., Mukherjee S.C. & Pattnaik P. (2006) Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture 255, 82–94. 10.1016/j.aquaculture.2005.12.009 CASWeb of Science®Google Scholar Navarre O. & Halver J.E. (1989) Disease resistance and humoral antibody production in rainbow trout fed high levels of vitamin C. Aquaculture 79, 207–221. 10.1016/0044-8486(89)90462-6 CASWeb of Science®Google Scholar Nicholson J.K., Holmes E. & Wilson I.D. (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nature Reviews Microbiology 3, 431–438. 10.1038/nrmicro1152 CASPubMedWeb of Science®Google Scholar Ortuño J., Cuesta A., Esteban M.A. & Meseguer J. (2001) Effect of oral administration of high vitamin C and E dosages on the gilthead seabream (Sparus aurata L.) innate immune system. Veterinary Immunology and Immunopathology 79, 167–180. 10.1016/S0165-2427(01)00264-1 CASPubMedWeb of Science®Google Scholar Paulsen S.M., Lunde H., Engstad R.E. & Robertsen B. (2003) In vivo effects of β-glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo salar L.). Fish & Shellfish Immunology 14, 39–54. 10.1006/fsim.2002.0416 CASPubMedWeb of Science®Google Scholar Ringø E., Myklebust R., Mayhew T.M. & Olsen R.E. (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268, 251–264. 10.1016/j.aquaculture.2007.04.047 Web of Science®Google Scholar Samuel M., Lam T.J. & Sin Y.M. (1996) Effect of Laminaran [β(1,3)-D-Glucan] on the protective immunity of blue gourami, Trichogaster trichopterus against Aeromonas hydrophila. Fish & Shellfish Immunology 6, 443–454. 10.1006/fsim.1996.0042 Web of Science®Google Scholar Savage D.C. (1977) Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology 31, 107–133. 10.1146/annurev.mi.31.100177.000543 CASPubMedWeb of Science®Google Scholar Selvaraj V., Sampath K. & Sekar V. (2005) Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish & Shellfish Immunology 19, 293–306. 10.1016/j.fsi.2005.01.001 CASPubMedWeb of Science®Google Scholar Siwicki A.K., Anderson D.P. & Rumsey G.L. (1994) Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Veterinary Immunology & Immunopathology 41, 125–139. 10.1016/0165-2427(94)90062-0 CASPubMedWeb of Science®Google Scholar Skov J., Kania P.W., Holten-Andersen L., Fouz B. & Buchmann K. (2012) Immunomodulatory effects of dietary β-1,3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri. Fish & Shellfish Immunology 33, 111–120. 10.1016/j.fsi.2012.04.009 CASPubMedWeb of Science®Google Scholar Spanggaard B., Huber I., Nielsen J., Nielsen T., Appel K.F. & Gram L. (2000) The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182, 1–15. 10.1016/S0044-8486(99)00250-1 CASWeb of Science®Google Scholar Sugita H., Tanaka K., Yoshinami M. & Deguchi Y. (1995) Distribution of Aeromonas species in the intestinal tracts of river fish. Applied & Environmental Microbiology 61, 4128. CASPubMedWeb of Science®Google Scholar Tobback E., Decostere A., Hermans K., Haesebrouck F. & Chiers K. (2007) Yersinia ruckeri infections in salmonid fish. Journal of Fish Diseases 30, 257–268. 10.1111/j.1365-2761.2007.00816.x CASPubMedWeb of Science®Google Scholar Torrecillas S., Makol A., Caballero M.J., Montero D., Dhanasiri A.K.S., Sweetman J. & Izquierdo M. (2012) Effects of mortality and stress response in European sea bass, Dicentrarchus labrax (L.), fed mannan oligosaccharides (MOS) after Vibrio anguillarum exposure. Journal of Fish Diseases 35, 591–602. 10.1111/j.1365-2761.2012.01384.x CASPubMedWeb of Science®Google Scholar Xu J., Bjursell M.K., Himrod J., Deng S., Carmichael L.K., Chiang H.C., Hooper L.V. & Gordon J.I. (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076. 10.1126/science.1080029 CASPubMedWeb of Science®Google Scholar Xueqin J., Kania P.W. & Buchmann K. (2012) Comparative effects of four feed types on white spot disease susceptibility and skin immune parameters in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 35, 127–135. 10.1111/j.1365-2761.2011.01329.x CASPubMedWeb of Science®Google Scholar Yano T., Mangindaan R.E.P. & Matsuyama H. (1989) Enhancement of the resistance of carp Cyprinus carpio to experimental Edwardsiella tarda infection, by some β-1,3-glucans. Bulletin of the Japanese Society of Scientific Fisheries 55, 1815–1819. 10.2331/suisan.55.1815 CASWeb of Science®Google Scholar Citing Literature Volume36, Issue6June 2013Pages 599-606 ReferencesRelatedInformation
Referência(s)