Artigo Revisado por pares

Temperature and Copepod Growth in the Sea: A Comment on the Temperature-Dependent Model of Huntley and Lopez

1996; University of Chicago Press; Volume: 148; Issue: 2 Linguagem: Inglês

10.1086/285932

ISSN

1537-5323

Autores

G. S. Kleppel, Cabell S. Davis, Kevin Carter,

Tópico(s)

Isotope Analysis in Ecology

Resumo

Previous articleNext article No AccessNotes and CommentsTemperature and Copepod Growth in the Sea: A Comment on the Temperature-Dependent Model of Huntley and LopezG. S. Kleppel, Cabell S. Davis, and Kevin CarterG. S. Kleppel, Cabell S. Davis, and Kevin CarterPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 148, Number 2Aug., 1996 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/285932 Views: 15Total views on this site Citations: 28Citations are reported from Crossref Copyright 1996 The University of ChicagoPDF download Crossref reports the following articles citing this article: Secondary Production, (Dec 2021): 298–330.https://doi.org/10.1002/9781119568919.ch9Austin J. Gearty, Toni R. Ignoffo, Anne M. Slaughter, Wim J. Kimmerer Growth and reproductive rates of the dominant copepod Pseudodiaptomus forbesi in response to environmental factors and habitat type in the northern San Francisco Estuary, Aquatic Ecology 55, no.33 (May 2021): 825–848.https://doi.org/10.1007/s10452-021-09863-4Seong Yong Moon, Hyun Ju Oh Seasonal changes in copepod biomass and production in Gamak Bay, Korea, Fisheries and Aquatic Sciences 24, no.44 (Apr 2021): 171–179.https://doi.org/10.47853/FAS.2021.e17Matthew C. Sasaki, Hans G. Dam Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short‐lived copepod, Ecology and Evolution 10, no.2121 (Oct 2020): 12200–12210.https://doi.org/10.1002/ece3.6851Gilbert T. Rowe Offshore Plankton and Benthos of the Gulf of Mexico, (Jun 2017): 641–767.https://doi.org/10.1007/978-1-4939-3447-8_7Dina Amanda Gonçalves, Sónia Cotrim Marques, Ana Lígia Primo, Filipe Martinho, Maria Donas-Bôtto Bordalo, Miguel Ângelo Pardal Mesozooplankton biomass and copepod estimated production in a temperate estuary (Mondego estuary): effects of processes operating at different timescales, Zoological Studies 54, no.11 (Aug 2015).https://doi.org/10.1186/s40555-015-0135-6Alaba E. Gbadamosi Quantitative Genetic Variability in Picralima nitida (Stapf) from Seven Sources in Nigeria, Journal of Sustainable Forestry 33, no.44 (Apr 2014): 358–372.https://doi.org/10.1080/10549811.2014.899499K. Y. Lin, A. R. Sastri, G. C. Gong, C. H. Hsieh Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea: a test of metabolic theory of ecology, Biogeosciences 10, no.33 (Mar 2013): 1877–1892.https://doi.org/10.5194/bg-10-1877-2013K. Y. Lin, A. Sastri, G. C. Gong, C. H. Hsieh Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea: a test of metabolic theory of ecology, Biogeosciences Discussions 9, no.1111 (Nov 2012): 16303–16346.https://doi.org/10.5194/bgd-9-16303-2012Hyung-Ku Kang, Chang-Rae Lee, Keun-Hyung Choi Egg production rate of the copepod Calanus sinicus off the Korean coast of the Yellow Sea during spring, Ocean Science Journal 46, no.33 (Oct 2011): 133–143.https://doi.org/10.1007/s12601-011-0012-0D.G. Kimmel Plankton Consumer Groups, (Jan 2011): 95–126.https://doi.org/10.1016/B978-0-12-374711-2.00607-0A.B. Neuheimer, W.C. Gentleman, P. Pepin, E.J.H. Head Explaining regional variability in copepod recruitment: Implications for a changing climate, Progress in Oceanography 87, no.1-41-4 (Oct 2010): 94–105.https://doi.org/10.1016/j.pocean.2010.09.008Robert O. Megard, Elise Ralph, Michelle Marko Effects of wind and temperature on Lake Superior copepods, SIL Proceedings, 1922-2010 30, no.55 (Dec 2017): 801–808.https://doi.org/10.1080/03680770.2009.11902242Sérgio Miguel Leandro, Fernando Morgado, Fábio Pereira, Henrique Queiroga Temporal changes of abundance, biomass and production of copepod community in a shallow temperate estuary (Ria de Aveiro, Portugal), Estuarine, Coastal and Shelf Science 74, no.1-21-2 (Aug 2007): 215–222.https://doi.org/10.1016/j.ecss.2007.04.009Hui Liu, Russell R. Hopcroft A comparison of seasonal growth and development of the copepods Calanus marshallae and C. pacificus in the northern Gulf of Alaska, Journal of Plankton Research 29, no.77 (May 2007): 569–581.https://doi.org/10.1093/plankt/fbm039Hui Liu, Russell R. Hopcroft Growth and development of Neocalanus flemingeri/plumchrus in the northern Gulf of Alaska: validation of the artificial-cohort method in cold waters, Journal of Plankton Research 28, no.11 (Jan 2006): 87–101.https://doi.org/10.1093/plankt/fbi102Catherine Rey-Rassat, Delphine Bonnet, Xabier Irigoien, Roger Harris, Robert Head, François Carlotti Secondary production of Calanus helgolandicus in the Western English Channel, Journal of Experimental Marine Biology and Ecology 313, no.11 (Dec 2004): 29–46.https://doi.org/10.1016/j.jembe.2004.07.015Ru Cheng Tian, Don Deibel, Richard B Rivkin, Alain F Vézina Biogenic carbon and nitrogen export in a deep-convection region: simulations in the Labrador Sea, Deep Sea Research Part I: Oceanographic Research Papers 51, no.33 (Mar 2004): 413–437.https://doi.org/10.1016/j.dsr.2003.10.015S. McClatchie, G. J. Macaulay, R. F. Coombs Acoustic backscatter and copepod secondary production across the Subtropical Front to the east of New Zealand, Journal of Geophysical Research: Oceans 109, no.C3C3 (Mar 2004).https://doi.org/10.1029/2000JC000751Michael Krause, Heino Fock, Wulf Greve, Gesche Winkler North sea zooplankton: a review, Senckenbergiana maritima 33, no.1-21-2 (Dec 2003): 71–204.https://doi.org/10.1007/BF03043048F. Alonzo, P. Mayzaud, S. Razouls, P. Bocher, Y. Cherel Seasonal changes in biomass, growth rates and production of subantarctic calanoid copepods in the Bay of Morbihan, Kerguelen Islands, Marine Biology 142, no.33 (Dec 2002): 525–536.https://doi.org/10.1007/s00227-002-0976-5D Burdloff, S Gasparini, F Villate, I Uriarte, U Cotano, B Sautour, H Etcheber Egg production of the copepod Acartia bifilosa in two contrasting European estuaries in relation to seston composition, Journal of Experimental Marine Biology and Ecology 274, no.11 (Jul 2002): 1–17.https://doi.org/10.1016/S0022-0981(02)00133-8R A Clark, C LJ Frid Long-term changes in the North Sea ecosystem, Environmental Reviews 9, no.33 (Sep 2001): 131–187.https://doi.org/10.1139/a01-005M.R. Roman, H.A. Adolf, M.R. Landry, L.P. Madin, D.K. Steinberg, X. Zhang Estimates of oceanic mesozooplankton production: a comparison using the Bermuda and Hawaii time-series data, Deep Sea Research Part II: Topical Studies in Oceanography 49, no.1-31-3 (Jan 2001): 175–192.https://doi.org/10.1016/S0967-0645(01)00099-6Michael Roman, Sharon Smith, Karen Wishner, Xinsheng Zhang, Marcia Gowing Mesozooplankton production and grazing in the Arabian Sea, Deep Sea Research Part II: Topical Studies in Oceanography 47, no.7-87-8 (Jan 2000): 1423–1450.https://doi.org/10.1016/S0967-0645(99)00149-6P. Pondaven, D. Ruiz-Pino, J.N. Druon, C. Fravalo, P. Tréguer Factors controlling silicon and nitrogen biogeochemical cycles in high nutrient, low chlorophyll systems (the Southern Ocean and the North Pacific): Comparison with a mesotrophic system (the North Atlantic), Deep Sea Research Part I: Oceanographic Research Papers 46, no.1111 (Nov 1999): 1923–1968.https://doi.org/10.1016/S0967-0637(99)00033-3RUBEN ESCRIBANO Population dynamics of Calanus chilensis in the Chilean Eastern Boundary Humboldt Current, Fisheries Oceanography 7, no.3‐43‐4 (Feb 2002): 245–251.https://doi.org/10.1046/j.1365-2419.1998.00078.x Mark Huntley Temperature and Copepod Production in the Sea: A Reply, The American Naturalist 148, no.22 (Oct 2015): 407–420.https://doi.org/10.1086/285933

Referência(s)
Altmetric
PlumX