Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics
1991; Royal Society; Volume: 246; Issue: 1316 Linguagem: Inglês
10.1098/rspb.1991.0142
ISSN1471-2954
AutoresD.A.J. Rand, Howard B. Wilson,
Tópico(s)Mathematical and Theoretical Epidemiology and Ecology Models
ResumoRestricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Rand D. A. and Wilson H. B. 1991Chaotic stochasticity: a ubiquitous source of unpredictability in epidemicsProc. R. Soc. Lond. B.246179–184http://doi.org/10.1098/rspb.1991.0142SectionRestricted accessArticleChaotic stochasticity: a ubiquitous source of unpredictability in epidemics D. A. Rand Google Scholar Find this author on PubMed Search for more papers by this author and H. B. Wilson Google Scholar Find this author on PubMed Search for more papers by this author D. A. Rand Google Scholar Find this author on PubMed and H. B. Wilson Google Scholar Find this author on PubMed Published:22 November 1991https://doi.org/10.1098/rspb.1991.0142AbstractWe address the question of whether or not childhood epidemics such as measles and chickenpox are chaotic, and argue that the best explanation of the observed unpredictability is that it is a manifestation of what we call chaotic stochasticity. Such chaos is driven and made perm anent by the fluctuations from the mean field encountered in epidemics, or by extrinsic stochastic noise, and is dependent upon the existence of chaotic repellors in the mean field dynamics. Its existence is also a consequence of the near extinctions in the epidemic. For such systems, chaotic stochasticity is likely to be far more ubiquitous than the presence of deterministic chaotic attractors. It is likely to be a common phenomenon in biological dynamics.FootnotesThis text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited byMamis K and Farazmand M (2023) Stochastic compartmental models of the COVID-19 pandemic must have temporally correlated uncertainties, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479:2269, Online publication date: 1-Jan-2023. Majumder A, Adak D and Bairagi N (2021) Persistence and extinction of species in a disease-induced ecological system under environmental stochasticity, Physical Review E, 10.1103/PhysRevE.103.032412, 103:3 Kovács T (2020) How can contemporary climate research help understand epidemic dynamics? Ensemble approach and snapshot attractors, Journal of The Royal Society Interface, 17:173, Online publication date: 1-Dec-2020. Eilersen A, Jensen M and Sneppen K (2020) Chaos in disease outbreaks among prey, Scientific Reports, 10.1038/s41598-020-60945-z, 10:1, Online publication date: 1-Dec-2020. Abbott K and Dakos V (2020) Mapping the distinct origins of bimodality in a classic model with alternative stable states, Theoretical Ecology, 10.1007/s12080-020-00476-5 Becker A, Wesolowski A, Bjørnstad O, Grenfell B and Regoes R (2019) Long-term dynamics of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination, PLOS Computational Biology, 10.1371/journal.pcbi.1007305, 15:9, (e1007305) Billings L and Forgoston E (2017) Seasonal forcing in stochastic epidemiology models, Ricerche di Matematica, 10.1007/s11587-017-0346-8, 67:1, (27-47), Online publication date: 1-Jun-2018. Bjørnstad O (2018) Seasonality Epidemics, 10.1007/978-3-319-97487-3_5, (81-94), . Bjørnstad O (2018) Exotica Epidemics, 10.1007/978-3-319-97487-3_10, (179-208), . Abbott K and Nolting B (2017) Alternative (un)stable states in a stochastic predator–prey model, Ecological Complexity, 10.1016/j.ecocom.2016.11.004, 32, (181-195), Online publication date: 1-Dec-2017. Rebuli N, Bean N and Ross J (2016) Hybrid Markov chain models of S–I–R disease dynamics, Journal of Mathematical Biology, 10.1007/s00285-016-1085-2, 75:3, (521-541), Online publication date: 1-Sep-2017. González Parra G, Arenas A and Cogollo M (2017) Positivity and Boundedness of Solutionsfor a Stochastic Seasonal EpidemiologicalModel for Respiratory Syncytial Virus(RSV), Ingeniería y Ciencia, 10.17230/ingciencia.13.25.4, 13:25, (95-121), Online publication date: 1-Apr-2017. Aldana E, Medone P, Pineda D, Menu F and Rabinovich J (2017) Development time and fitness: is there an adaptive development delay in the Rhodnius prolixus fifth nymphal stage? , Entomologia Experimentalis et Applicata, 10.1111/eea.12522, 163:1, (1-8), Online publication date: 1-Apr-2017. Chen S and Epureanu B (2017) Regular biennial cycles in epidemics caused by parametric resonance, Journal of Theoretical Biology, 10.1016/j.jtbi.2016.12.013, 415, (137-144), Online publication date: 1-Feb-2017. Christakos G, Zhang C and He J (2016) A traveling epidemic model of space–time disease spread, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-016-1298-3, 31:2, (305-314), Online publication date: 1-Feb-2017. (2017) References Spatiotemporal Random Fields, 10.1016/B978-0-12-803012-7.16001-5, (643-652), . Cobey S, Baskerville E and Reich N (2016) Limits to Causal Inference with State-Space Reconstruction for Infectious Disease, PLOS ONE, 10.1371/journal.pone.0169050, 11:12, (e0169050) Teng Z and Wang L (2016) Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2016.01.084, 451, (507-518), Online publication date: 1-Jun-2016. Dalziel B, Bjørnstad O, van Panhuis W, Burke D, Metcalf C, Grenfell B and Ferguson N (2016) Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns, PLOS Computational Biology, 10.1371/journal.pcbi.1004655, 12:2, (e1004655) Duarte J, Rodrigues C, Januário C, Martins N and Sardanyés J (2015) How Complex, Probable, and Predictable is Genetically Driven Red Queen Chaos?, Acta Biotheoretica, 10.1007/s10441-015-9254-z, 63:4, (341-361), Online publication date: 1-Dec-2015. Lofgren E and Muneepeerakul R (2015) Pools versus Queues: The Variable Dynamics of Stochastic "Steady States", PLOS ONE, 10.1371/journal.pone.0130574, 10:6, (e0130574) Hempel K and Earn D (2015) A century of transitions in New York City's measles dynamics, Journal of The Royal Society Interface, 12:106, Online publication date: 1-May-2015. Settati A and Lahrouz A (2015) On stochastic Gilpin–Ayala population model with Markovian switching, Biosystems, 10.1016/j.biosystems.2015.01.004, 130, (17-27), Online publication date: 1-Apr-2015. Nieddu G, Billings L and Forgoston E (2014) Analysis and Control of Pre-extinction Dynamics in Stochastic Populations, Bulletin of Mathematical Biology, 10.1007/s11538-014-0047-3, 76:12, (3122-3137), Online publication date: 1-Dec-2014. Lahrouz A and Settati A (2014) Qualitative Study of a Nonlinear Stochastic SIRS Epidemic System, Stochastic Analysis and Applications, 10.1080/07362994.2014.961088, 32:6, (992-1008), Online publication date: 2-Nov-2014. Posny D and Wang J (2014) Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, Applied Mathematics and Computation, 10.1016/j.amc.2014.05.079, 242, (473-490), Online publication date: 1-Sep-2014. Arinaminpathy N, Metcalf C and Grenfell B (2014) Viral Dynamics and Mathematical Models Viral Infections of Humans, 10.1007/978-1-4899-7448-8_5, (81-96), . Volkova V, Lu Z, Lanzas C, Scott H and Gröhn Y (2013) Modelling dynamics of plasmid-gene mediated antimicrobial resistance in enteric bacteria using stochastic differential equations, Scientific Reports, 10.1038/srep02463, 3:1, Online publication date: 1-Dec-2013. Duncan A, Gonzalez A and Kaltz O (2013) Stochastic environmental fluctuations drive epidemiology in experimental host–parasite metapopulations, Proceedings of the Royal Society B: Biological Sciences, 280:1769, Online publication date: 22-Oct-2013. Forgoston E and Schwartz I (2013) Predicting Unobserved Exposures from Seasonal Epidemic Data, Bulletin of Mathematical Biology, 10.1007/s11538-013-9855-0, 75:9, (1450-1471), Online publication date: 1-Sep-2013. O'Regan S, Kelly T, Korobeinikov A, O'Callaghan M, Pokrovskii A and Rachinskii D (2012) Chaos in a seasonally perturbed SIR model: avian influenza in a seabird colony as a paradigm, Journal of Mathematical Biology, 10.1007/s00285-012-0550-9, 67:2, (293-327), Online publication date: 1-Aug-2013. Krylova O and Earn D (2013) Effects of the infectious period distribution on predicted transitions in childhood disease dynamics, Journal of The Royal Society Interface, 10:84, Online publication date: 6-Jul-2013. Tanaka G and Aihara K (2013) Effects of seasonal variation patterns on recurrent outbreaks in epidemic models, Journal of Theoretical Biology, 10.1016/j.jtbi.2012.09.038, 317, (87-95), Online publication date: 1-Jan-2013. Angulo J, Yu H, Langousis A, Madrid A and Christakos G (2012) Modeling of space–time infectious disease spread under conditions of uncertainty, International Journal of Geographical Information Science, 10.1080/13658816.2011.648642, 26:10, (1751-1772), Online publication date: 1-Oct-2012. Bai Z, Zhou Y and Zhang T (2011) Existence of multiple periodic solutions for an SIR model with seasonality, Nonlinear Analysis: Theory, Methods & Applications, 10.1016/j.na.2011.03.008, 74:11, (3548-3555), Online publication date: 1-Jul-2011. Duke-Sylvester S, Bolzoni L and Real L (2010) Strong seasonality produces spatial asynchrony in the outbreak of infectious diseases, Journal of The Royal Society Interface, 8:59, (817-825), Online publication date: 6-Jun-2011. Bódai T, Károlyi G and Tél T (2011) Fractal snapshot components in chaos induced by strong noise, Physical Review E, 10.1103/PhysRevE.83.046201, 83:4 Sun G, Jin Z, Song L, Chakraborty A and Li B (2010) Phase transition in spatial epidemics using cellular automata with noise, Ecological Research, 10.1007/s11284-010-0789-9, 26:2, (333-340), Online publication date: 1-Mar-2011. Petrovskii S, Morozov A, Malchow H and Sieber M (2010) Noise can prevent onset of chaos in spatiotemporal population dynamics, The European Physical Journal B, 10.1140/epjb/e2010-10410-8, 78:2, (253-264), Online publication date: 1-Nov-2010. Black A and McKane A (2010) Stochastic amplification in an epidemic model with seasonal forcing, Journal of Theoretical Biology, 10.1016/j.jtbi.2010.08.014, 267:1, (85-94), Online publication date: 1-Nov-2010. Dercole F, Ferriere R and Rinaldi S (2010) Chaotic Red Queen coevolution in three-species food chains, Proceedings of the Royal Society B: Biological Sciences, 277:1692, (2321-2330), Online publication date: 7-Aug-2010.Black A and McKane A (2010) Stochasticity in staged models of epidemics: quantifying the dynamics of whooping cough, Journal of The Royal Society Interface, 7:49, (1219-1227), Online publication date: 6-Aug-2010. Tél T and Lai Y (2010) Quasipotential approach to critical scaling in noise-induced chaos, Physical Review E, 10.1103/PhysRevE.81.056208, 81:5 Shaw L and Schwartz I (2010) Enhanced vaccine control of epidemics in adaptive networks, Physical Review E, 10.1103/PhysRevE.81.046120, 81:4 GONZÁLEZ-PARRA G, ARENAS A and SANTONJA F (2011) STOCHASTIC MODELING WITH MONTE CARLO OF OBESITY POPULATION, Journal of Biological Systems, 10.1142/S0218339010003159, 18:01, (93-108), Online publication date: 1-Mar-2010. Chinviriyasit S and Chinviriyasit W (2010) Numerical modelling of an SIR epidemic model with diffusion, Applied Mathematics and Computation, 10.1016/j.amc.2010.01.028, 216:2, (395-409), Online publication date: 1-Mar-2010. Forgoston E, Billings L and Schwartz I (2009) Accurate noise projection for reduced stochastic epidemic models, Chaos: An Interdisciplinary Journal of Nonlinear Science, 10.1063/1.3247350, 19:4, (043110), Online publication date: 1-Dec-2009. Varughese M (2009) On the accuracy of a diffusion approximation to a discrete state–space Markovian model of a population, Theoretical Population Biology, 10.1016/j.tpb.2009.08.002, 76:4, (241-247), Online publication date: 1-Dec-2009. Rajon E, Venner S and Menu F (2009) Spatially heterogeneous stochasticity and the adaptive diversification of dormancy, Journal of Evolutionary Biology, 10.1111/j.1420-9101.2009.01825.x, 22:10, (2094-2103), Online publication date: 1-Oct-2009. Lindström T (2009) Detecting chaos requires careful analysis of nearly periodic data, Chaos, Solitons & Fractals, 10.1016/j.chaos.2008.11.007, 42:1, (212-223), Online publication date: 1-Oct-2009. LINDSTRÖM T (2012) STABILITY SWITCHES IN DISCRETE FOOD-CHAIN PROBLEMS, International Journal of Bifurcation and Chaos, 10.1142/S0218127409024657, 19:09, (3067-3085), Online publication date: 1-Sep-2009. Pujol J, Eisenberg J, Haas C, Koopman J and Antia R (2009) The Effect of Ongoing Exposure Dynamics in Dose Response Relationships, PLoS Computational Biology, 10.1371/journal.pcbi.1000399, 5:6, (e1000399) Arenas A, González-Parra G and Moraño J (2009) Stochastic modeling of the transmission of respiratory syncytial virus (RSV) in the region of Valencia, Spain, Biosystems, 10.1016/j.biosystems.2009.01.007, 96:3, (206-212), Online publication date: 1-Jun-2009. Ascioti F (2009) Four twins for a paradox: On "sensitive" twins and the biological counterpart of the "twin paradox", Chaos: An Interdisciplinary Journal of Nonlinear Science, 10.1063/1.3081043, 19:1, (013128), Online publication date: 1-Mar-2009. Keeling M and Ross J (2009) Efficient methods for studying stochastic disease and population dynamics, Theoretical Population Biology, 10.1016/j.tpb.2009.01.003, 75:2-3, (133-141), Online publication date: 1-Mar-2009. Schwartz I, Billings L, Dykman M and Landsman A (2009) Predicting extinction rates in stochastic epidemic models, Journal of Statistical Mechanics: Theory and Experiment, 10.1088/1742-5468/2009/01/P01005, 2009:01, (P01005) Bacaër N and Abdurahman X (2008) Resonance of the epidemic threshold in a periodic environment, Journal of Mathematical Biology, 10.1007/s00285-008-0183-1, 57:5, (649-673), Online publication date: 1-Nov-2008. Bjørnstad O and Grenfell B (2007) Hazards, spatial transmission and timing of outbreaks in epidemic metapopulations, Environmental and Ecological Statistics, 10.1007/s10651-007-0059-3, 15:3, (265-277), Online publication date: 1-Sep-2008. Dykman M, Schwartz I and Landsman A (2008) Disease Extinction in the Presence of Random Vaccination, Physical Review Letters, 10.1103/PhysRevLett.101.078101, 101:7 Varughese M and Fatti L (2008) Incorporating environmental stochasticity within a biological population model, Theoretical Population Biology, 10.1016/j.tpb.2008.05.004, 74:1, (115-129), Online publication date: 1-Aug-2008. Nguyen H and Rohani P (2007) Noise, nonlinearity and seasonality: the epidemics of whooping cough revisited, Journal of The Royal Society Interface, 5:21, (403-413), Online publication date: 6-Apr-2008.Keeling M and Ross J (2007) On methods for studying stochastic disease dynamics, Journal of The Royal Society Interface, 5:19, (171-181), Online publication date: 6-Feb-2008. TÉL T, LAI Y and GRUIZ M (2011) NOISE-INDUCED CHAOS: A CONSEQUENCE OF LONG DETERMINISTIC TRANSIENTS, International Journal of Bifurcation and Chaos, 10.1142/S0218127408020422, 18:02, (509-520), Online publication date: 1-Feb-2008. Gilioli G, Pasquali S and Ruggeri F (2007) Bayesian Inference for Functional Response in a Stochastic Predator–Prey System, Bulletin of Mathematical Biology, 10.1007/s11538-007-9256-3, 70:2, (358-381), Online publication date: 1-Feb-2008. Bauch C (2008) The Role of Mathematical Models in Explaining Recurrent Outbreaks of Infectious Childhood Diseases Mathematical Epidemiology, 10.1007/978-3-540-78911-6_11, (297-319), . ABBOTT K and DWYER G (2007) Food limitation and insect outbreaks: complex dynamics in plant?herbivore models, Journal of Animal Ecology, 10.1111/j.1365-2656.2007.01263.x, 76:5, (1004-1014), Online publication date: 1-Sep-2007. Schaffer W and Bronnikova T (2007) Parametric dependence in model epidemics. II: Non-contact rate-related parameters, Journal of Biological Dynamics, 10.1080/17513750701201364, 1:3, (231-248), Online publication date: 1-Jul-2007. Alonso D, McKane A and Pascual M (2006) Stochastic amplification in epidemics, Journal of The Royal Society Interface, 4:14, (575-582), Online publication date: 22-Jun-2007. Schaffer W and Bronnikova T (2007) Parametric dependence in model epidemics. I: Contact-related parameters, Journal of Biological Dynamics, 10.1080/17513750601174216, 1:2, (183-195), Online publication date: 1-Apr-2007. Stone L, Olinky R and Huppert A (2007) Seasonal dynamics of recurrent epidemics, Nature, 10.1038/nature05638, 446:7135, (533-536), Online publication date: 1-Mar-2007. Kleppe I and Robinson H (2006) Correlation entropy of synaptic input-output dynamics, Physical Review E, 10.1103/PhysRevE.74.041909, 74:4 Ferriere R, Guionnet A and Kurkova I (2006) Timescales of population rarity and commonness in random environments, Theoretical Population Biology, 10.1016/j.tpb.2006.01.005, 69:4, (351-366), Online publication date: 1-Jun-2006. Drake J and Lodge D (2006) Allee Effects, Propagule Pressure and the Probability of Establishment: Risk Analysis for Biological Invasions, Biological Invasions, 10.1007/s10530-004-8122-6, 8:2, (365-375), Online publication date: 1-Mar-2006. Ellner S and Turchin P (2005) When can noise induce chaos and why does it matter: a critique, Oikos, 10.1111/j.1600-0706.2005.14129.x, 111:3, (620-631), Online publication date: 1-Dec-2005. Keeling M and Eames K (2005) Networks and epidemic models, Journal of The Royal Society Interface, 2:4, (295-307), Online publication date: 22-Sep-2005. Kamo M and Sasaki A (2005) Evolution toward multi-year periodicity in epidemics, Ecology Letters, 10.1111/j.1461-0248.2005.00734.x, 8:4, (378-385), Online publication date: 1-Apr-2005. Andreasen V and Frommelt T (2005) A School-Oriented, Age-Structured Epidemic Model, SIAM Journal on Applied Mathematics, 10.1137/040610684, 65:6, (1870-1887), Online publication date: 1-Jan-2005. BJØRNSTAD O, NISBET R and FROMENTIN J (2004) Trends and cohort resonant effects in age‐structured populations, Journal of Animal Ecology, 10.1111/j.0021-8790.2004.00888.x, 73:6, (1157-1167), Online publication date: 1-Nov-2004. BONSALL M and HASTINGS A (2004) Demographic and environmental stochasticity in predator–prey metapopulation dynamics, Journal of Animal Ecology, 10.1111/j.0021-8790.2004.00874.x, 73:6, (1043-1055), Online publication date: 1-Nov-2004. Ireland J, Norman R and Greenman J (2004) The effect of seasonal host birth rates on population dynamics: the importance of resonance, Journal of Theoretical Biology, 10.1016/j.jtbi.2004.06.017, 231:2, (229-238), Online publication date: 1-Nov-2004. Schwartz I, Billings L and Bollt E (2004) Dynamical epidemic suppression using stochastic prediction and control, Physical Review E, 10.1103/PhysRevE.70.046220, 70:4 Seuront L (2004) Small-scale turbulence in the plankton: low-order deterministic chaos or high-order stochasticity?, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2004.04.128, 341, (495-525), Online publication date: 1-Oct-2004. Xia Y, Bjørnstad O and Grenfell B (2004) Measles Metapopulation Dynamics: A Gravity Model for Epidemiological Coupling and Dynamics, The American Naturalist, 10.1086/422341, 164:2, (267-281), Online publication date: 1-Aug-2004. Dwyer G, Dushoff J and Yee S (2004) The combined effects of pathogens and predators on insect outbreaks, Nature, 10.1038/nature02569, 430:6997, (341-345), Online publication date: 1-Jul-2004. Coulson T, Rohani P and Pascual M (2004) Skeletons, noise and population growth: the end of an old debate?, Trends in Ecology & Evolution, 10.1016/j.tree.2004.05.008, 19:7, (359-364), Online publication date: 1-Jul-2004. Greenman J, Kamo M and Boots M (2004) External forcing of ecological and epidemiological systems: a resonance approach, Physica D: Nonlinear Phenomena, 10.1016/j.physd.2003.08.008, 190:1-2, (136-151), Online publication date: 1-Mar-2004. Lloyd A (2004) Estimating variability in models for recurrent epidemics: assessing the use of moment closure techniques, Theoretical Population Biology, 10.1016/j.tpb.2003.07.002, 65:1, (49-65), Online publication date: 1-Feb-2004. Hastings A (2004) Transients: the key to long-term ecological understanding?, Trends in Ecology & Evolution, 10.1016/j.tree.2003.09.007, 19:1, (39-45), Online publication date: 1-Jan-2004. Doebeli M and Killingback T (2003) Metapopulation dynamics with quasi-local competition, Theoretical Population Biology, 10.1016/S0040-5809(03)00106-0, 64:4, (397-416), Online publication date: 1-Dec-2003. Pascual M and Mazzega P (2003) Quasicycles revisited: apparent sensitivity to initial conditions, Theoretical Population Biology, 10.1016/S0040-5809(03)00086-8, 64:3, (385-395), Online publication date: 1-Nov-2003. Dennis B, Desharnais R, Cushing J, Henson S and Costantino R (2003) Can noise induce chaos?, Oikos, 10.1034/j.1600-0706.2003.12387.x, 102:2, (329-339), Online publication date: 1-Aug-2003. Rohani P, Green C, Mantilla-Beniers N and Grenfell B (2003) Ecological interference between fatal diseases, Nature, 10.1038/nature01542, 422:6934, (885-888), Online publication date: 1-Apr-2003. Greenman J and Benton T (2003) The Amplification of Environmental Noise in Population Models: Causes and Consequences, The American Naturalist, 10.1086/345784, 161:2, (225-239), Online publication date: 1-Feb-2003. Grenfell B, Bjørnstad O and Finkenstädt B (2002) DYNAMICS OF MEASLES EPIDEMICS: SCALING NOISE, DETERMINISM, AND PREDICTABILITY WITH THE TSIR MODEL, Ecological Monographs, 10.1890/0012-9615(2002)072[0185:DOMESN]2.0.CO;2, 72:2, (185-202), Online publication date: 1-May-2002. Bjørnstad O, Finkenstädt B and Grenfell B (2002) DYNAMICS OF MEASLES EPIDEMICS: ESTIMATING SCALING OF TRANSMISSION RATES USING A TIME SERIES SIR MODEL, Ecological Monographs, 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2, 72:2, (169-184), Online publication date: 1-May-2002. Billings L, Bollt E and Schwartz I (2002) Phase-Space Transport of Stochastic Chaos in Population Dynamics of Virus Spread, Physical Review Letters, 10.1103/PhysRevLett.88.234101, 88:23 Rohani P, Keeling M and Grenfell B (2002) The Interplay between Determinism and Stochasticity in Childhood Diseases, The American Naturalist, 10.1086/339467, 159:5, (469-481), Online publication date: 1-May-2002. Scheuring I (2002) Is Chaos Due to Over-simplification in Models of Population Dynamics?, Selection, 10.1556/Select.2.2001.1-2.13, 2:1-2, (179-191), Online publication date: 1-Apr-2002. Keeling M and Grenfell B (2002) Understanding the persistence of measles: reconciling theory, simulation and observation, Proceedings of the Royal Society of London. Series B: Biological Sciences, 269:1489, (335-343), Online publication date: 22-Feb-2002. Nåsell I (2002) Measles Outbreaks are not Chaotic Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, 10.1007/978-1-4613-0065-6_6, (85-114), . Stollenwerk N, Drepper F and Siegel H (2001) Testing nonlinear stochastic models on phytoplankton biomass time series, Ecological Modelling, 10.1016/S0304-3800(01)00377-5, 144:2-3, (261-277), Online publication date: 1-Oct-2001. Dennis B, Desharnais R, Cushing J, Henson S and Costantino R (2001) ESTIMATING CHAOS AND COMPLEX DYNAMICS IN AN INSECT POPULATION, Ecological Monographs, 10.1890/0012-9615(2001)071[0277:ECACDI]2.0.CO;2, 71:2, (277-303), Online publication date: 1-May-2001. Keeling M, Rohani P and Grenfell B (2001) Seasonally forced disease dynamics explored as switching between attractors, Physica D: Nonlinear Phenomena, 10.1016/S0167-2789(00)00187-1, 148:3-4, (317-335), Online publication date: 1-Jan-2001. Turchin P and Ellner S (2000) LIVING ON THE EDGE OF CHAOS: POPULATION DYNAMICS OF FENNOSCANDIAN VOLES, Ecology, 10.1890/0012-9658(2000)081[3099:LOTEOC]2.0.CO;2, 81:11, (3099-3116), Online publication date: 1-Nov-2000. Bjørnstad O (2001) Cycles and synchrony: two historical 'experiments' and one experience, Journal of Animal Ecology, 10.1046/j.1365-2656.2000.00444.x, 69:5, (869-873), Online publication date: 1-Sep-2000. Sait S, Liu W, Thompson D, Godfray H and Begon M (2000) Invasion sequence affects predator–prey dynamics in a multi-species interaction, Nature, 10.1038/35013045, 405:6785, (448-450), Online publication date: 1-May-2000. Marion G, Renshaw E and Gibson G (2000) Stochastic Modelling of Environmental Variation for Biological Populations, Theoretical Population Biology, 10.1006/tpbi.2000.1450, 57:3, (197-217), Online publication date: 1-May-2000. Grenfell B (2000) Measles as a Testbed for Characterising Nonlinear Behaviour in Ecology Chaos in Real Data, 10.1007/978-94-011-4010-2_3, (49-72), . Blarer and Doebeli (1999) Resonance effects and outbreaks in ecological time series, Ecology Letters, 10.1046/j.1461-0248.1999.00067.x, 2:3, (167-177), Online publication date: 1-May-1999. Grenfell B and Finkenstädt B (1998) Seasonality, stochasticity and population cycles, Researches on Population Ecology, 10.1007/BF02765232, 40:1, (141-143), Online publication date: 1-Jun-1998. Duncan C, Duncan S and Scott S (1997) The Dynamics of Measles Epidemics, Theoretical Population Biology, 10.1006/tpbi.1997.1326, 52:2, (155-163), Online publication date: 1-Oct-1997. Wilson H and Hassell M (1997) Host–parasitoid spatial models: the interplay of demographic stochasticity and dynamics, Proceedings of the Royal Society of London. Series B: Biological Sciences, 264:1385, (1189-1195), Online publication date: 22-Aug-1997.Keeling M, Rand D and Morris A (1997) Correlation models for childhood epidemics, Proceedings of the Royal Society of London. Series B: Biological Sciences, 264:1385, (1149-1156), Online publication date: 22-Aug-1997.Kaitala V, Ylikarjula J, Ranta E and Lundberg P (1997) Population dynamics and the colour of environmental noise, Proceedings of the Royal Society of London. Series B: Biological Sciences, 264:1384, (943-948), Online publication date: 22-Jul-1997.Wilson H and Rand D (1997) Reconstructing the dynamics of unobserved variables in spatially extended systems, Proceedings of the Royal Society of London. Series B: Biological Sciences, 264:1382, (625-630), Online publication date: 22-May-1997. Pascual M and Caswell H (1997) FROM THE CELL CYCLE TO POPULATION CYCLES IN PHYTOPLANKTON–NUTRIENT INTERACTIONS, Ecology, 10.1890/0012-9658(1997)078[0897:FTCCTP]2.0.CO;2, 78:3, (897-912), Online publication date: 1-Apr-1997. Ito K and Gunji Y (1997) Self-organized marginal stability resulting from inconsistency between fuzzy logic and deterministic logic: an application to biological systems, Biosystems, 10.1016/S0303-2647(96)01672-3, 41:3, (179-190), Online publication date: 1-Feb-1997. Adachi M and Aihara K (1997) Associative Dynamics in a Chaotic Neural Network, Neural Networks, 10.1016/S0893-6080(96)00061-5, 10:1, (83-98), Online publication date: 1-Jan-1997. Duncan C, Duncan S and Scott S (2009) The dynamics of scarlet fever epidemics in England and Wales in the 19th century, Epidemiology and Infection, 10.1017/S0950268800059161, 117:3, (493-499), Online publication date: 1-Dec-1996. Turchin P (1996) Nonlinear time-series modeling of vole population fluctuations, Researches on Population Ecology, 10.1007/BF02515720, 38:2, (121-132), Online publication date: 1-Dec-1996. King A, Schaffer W, Gordon C, Treat J and Kot M (1996) Weakly dissipative predator-prey systems, Bulletin of Mathematical Biology, 10.1007/BF02459486, 58:5, (835-859), Online publication date: 1-Sep-1996. Marrow P, Dieckmann U and Law R (1996) Evolutionary dynamics of predator-prey systems: an ecological perspective, Journal of Mathematical Biology, 10.1007/BF02409750, 34:5-6, (556-578), Online publication date: 1-May-1996. Sugihara G (1995) From out of the blue, Nature, 10.1038/378559a0, 378:6557, (559-560), Online publication date: 1-Dec-1995. Bolker B and Grenfell B (1997) Space, persistence and dynamics of measles epidemics, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 348:1325, (309-320), Online publication date: 30-May-1995. Lloyd A and Lloyd D (2008) Chaos : Its significance and detection in biology, Biological Rhythm Research, 10.1080/09291019509360338, 26:2, (233-252), Online publication date: 1-May-1995. Grenfell B, Bolker B and Kleczkowski A (1997) Seasonality and extinction in chaotic metapopulations, Proceedings of the Royal Society of London. Series B: Biological Sciences, 259:1354, (97-103), Online publication date: 23-Jan-1995. Engbert R and Drepper F (1994) Chance and chaos in population biology—Models of recurrent epidemics and food chain dynamics, Chaos, Solitons & Fractals, 10.1016/0960-0779(94)90028-0, 4:7, (1147-1169), Online publication date: 1-Jul-1994. Ruxton G (1997) Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles, Proceedings of the Royal Society of London. Series B: Biological Sciences, 256:1346, (189-193), Online publication date: 23-May-1994. Engbert R and Drepper F (1994) Qualitative Analysis of Unpredictability: A Case Study from Childhood Epidemics Predictability and Nonlinear Modelling in Natural Sciences and Economics, 10.1007/978-94-011-0962-8_17, (204-215), . Kendall B, Schaffer W, Olsen L, Tidd C and Jorgensen B (1994) Using Chaos to Understand Biological Dynamics Predictability and Nonlinear Modelling in Natural Sciences and Economics, 10.1007/978-94-011-0962-8_16, (184-203), . May R (1994) Spatial Chaos and its Role in Ecology and Evolution Frontiers in Mathematical Biology, 10.1007/978-3-642-50124-1_19, (326-344), . Tidd C, Olsen L and Schaffer W (1997) The case for chaos in childhood epidemics. II. Predicting historical epidemics from mathematical models, Proceedings of the Royal Society of London. Series B: Biological Sciences, 254:1341, (257-273), Online publication date: 22-Dec-1993.Bolker B and Grenfell B (1997) Chaos and biological complexity in measles dynamics, Proceedings of the Royal Society of London. Series B: Biological Sciences, 251:1330, (75-81), Online publication date: 22-Jan-1993. Adachi M, Aihara K and Kotani M An analysis of associative dynamics in a chaotic neural network with external stimulation 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), 10.1109/IJCNN.1993.713943, 0-7803-1421-2, (409-412) Isham V (1993) Statistical aspects of chaos: a review Networks and Chaos — Statistical and Probabilistic Aspects, 10.1007/978-1-4899-3099-6_3, (124-200), . (2018) Discussion on the Meeting on Chaos, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1992.tb01891.x, 54:2, (451-474), Online publication date: 1-Jan-1992. This Issue22 November 1991Volume 246Issue 1316 Article InformationDOI:https://doi.org/10.1098/rspb.1991.0142PubMed:1685243Published by:Royal SocietyPrint ISSN:0962-8452Online ISSN:1471-2954History: Published online01/01/1997Published in print22/11/1991 License:Scanned images copyright © 2017, Royal Society Citations and impact Large datasets are available through Proceedings B's partnership with Dryad
Referência(s)