E64d, a membrane-permeable cysteine protease inhibitor, attenuates the effects of parathyroid hormone on osteoblasts in vitro
1997; Elsevier BV; Volume: 46; Issue: 9 Linguagem: Inglês
10.1016/s0026-0495(97)90284-5
ISSN1532-8600
AutoresElsa J. Brochmann Murray, Mario Grisanti, G. Bentley, Samuel S. Murray,
Tópico(s)Protease and Inhibitor Mechanisms
ResumoParathyroid hormone (PTH) activates calpains I and II (calcium-activated papain-like proteases) and stimulates the synthesis and secretion of cathepsin B (a lysosomal cysteine protease) in osteoblastic cells. Anabolic doses of PTH also stimulate osteoprogenitor cell proliferation and differentiation into mature, fully functional osteoblasts capable of elaborating bone matrix, whereas catabolic doses of PTH stimulate calcium mobilization and matrix turnover. Previous investigations in other cell types have demonstrated that calcium-activated calpains play a major role in regulating proliferation and differentiation by catalyzing limited regulatory proteolysis of nuclear proteins, transcription factors, and enzymes. We tested the hypothesis that inhibition of intracellular cysteine proteases such as the calpains will ablate PTH-mediated osteoblast proliferation and differentiation, two fundamental indices of bone anabolism. A brief preincubation with the membrane-permeable, irreversible cysteine protease inhibitor E64d (10 μg/mL) before short-term PTH treatment blunted PTH-induced cell proliferation in subconfluent cultures and also attenuated proliferation and inhibited differentiation in longer-term confluent cultures. This confirms the hypothesis that cysteine proteases such as the calpains are important in mediating the proliferative and prodifferentiating or anabolic effects of PTH on MC3T3-E1 cells in culture. Immunofluorescent localization demonstrated that calpain I, calpain II, and calpastatin (the endogenous calpain inhibitor) are abundant and widely distributed within actively proliferating MC3T3-E1 preosteoblasts. Since the calpains are active and stable at neutral intracellular pH levels in osteoblasts, whereas cathepsins are not, our results support a role for these calcium-activated regulatory proteases in mediating the anabolic effects of PTH in bone.
Referência(s)