Can ginsenosides protect human erythrocytes against free-radical-induced hemolysis?
2002; Elsevier BV; Volume: 1572; Issue: 1 Linguagem: Inglês
10.1016/s0304-4165(02)00281-7
ISSN1872-8006
AutoresZai‐Qun Liu, Xuyang Luo, Yun-Xiu Sun, Yanping Chen, Zhicai Wang,
Tópico(s)Phytochemistry and biological activity of medicinal plants
ResumoMany studies have focused on the free-radical-initiated peroxidation of membrane lipid, which is associated with a variety of pathological events. Panax ginseng is used in traditional Chinese medicine to enhance stamina and capacity to deal with fatigue and physical stress. Many reports have been devoted to the effects of ginsenosides, the major active components in P. ginseng, on the lipid metabolism, immune function and cardiovascular system. The results, however, are usually contradictory since the usage of mixture of ginsenosides cannot identify the function of every individual ginsenosides on the experimental system. On the other hand, every individual ginsenosides is not compared under the same experimental condition. These facts motivate us to evaluate the antioxidant effect of various individual ginsenosides on the experimental system of free-radical-initiated peroxidation: the hemolysis of human erythrocyte induced thermally by water-soluble initiator, 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH). The inhibitory concentration of 50% inhibition (IC50) of AAPH-induced hemolysis of the erythrocyte has been studied firstly and found that the order of IC50 is Rb3∼Rb1≪Rg2<Re<Rg1∼Rc<Rh1 Rc>Re>Rh1>R1>Rg2>Rb3. Rg3, Rd and Rh2, however, act as synergistic prooxidants in the above experimental system. Rg1 does not show any synergistic antioxidative property. Although the antioxidative and prooxidative mechanism of various ginsenosides with or without TOH in AAPH-induced hemolysis of human erythrocytes will be further studied in detail, this information may be useful in the clinical usage of ginsenosides.
Referência(s)