Temporal patterns of genetic and phenotypic variation in the epidemiologically important drone fly, Eristalis tenax
2011; Wiley; Volume: 25; Issue: 2 Linguagem: Inglês
10.1111/j.1365-2915.2011.00956.x
ISSN1365-2915
AutoresLj. Francuski, Ivana Matić, Jasmina Ludoški, Vesna Milankov,
Tópico(s)Yersinia bacterium, plague, ectoparasites research
ResumoMedical and Veterinary EntomologyVolume 25, Issue 2 p. 135-147 Temporal patterns of genetic and phenotypic variation in the epidemiologically important drone fly, Eristalis tenax Lj. FRANCUSKI, Lj. FRANCUSKI Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, SerbiaSearch for more papers by this authorI. MATIĆ, I. MATIĆ Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, SerbiaSearch for more papers by this authorJ. LUDOŠKI, J. LUDOŠKI Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, SerbiaSearch for more papers by this authorV. MILANKOV, Corresponding Author V. MILANKOV Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, SerbiaVesna Milankov, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia. Tel.: +381 21 4852671; Fax: +381 21 450620; E-mail: [email protected]Search for more papers by this author Lj. FRANCUSKI, Lj. FRANCUSKI Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, SerbiaSearch for more papers by this authorI. MATIĆ, I. MATIĆ Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, SerbiaSearch for more papers by this authorJ. LUDOŠKI, J. LUDOŠKI Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, SerbiaSearch for more papers by this authorV. MILANKOV, Corresponding Author V. MILANKOV Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, SerbiaVesna Milankov, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia. Tel.: +381 21 4852671; Fax: +381 21 450620; E-mail: [email protected]Search for more papers by this author First published: 17 March 2011 https://doi.org/10.1111/j.1365-2915.2011.00956.xCitations: 15Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Eristalis tenax L. (Diptera: Syrphidae) is commonly known as the drone fly (adult) or rat-tailed maggot (immature). Both adults and immature stages are identified as potential mechanical vectors of mycobacterial pathogens, and early-stage maggots cause accidental myiasis. We compared four samples from Mount Fruška Gora, Serbia, with the aim of obtaining insights into the temporal variations and sexual dimorphism in the species. This integrative approach was based on allozyme loci, morphometric wing parameters (shape and size) and abdominal colour patterns. Consistent sexual dimorphism was observed, indicating that male specimens had lighter abdomens and smaller and narrower wings than females. The distribution of genetic diversity at polymorphic loci indicated genetic divergence among collection dates. Landmark-based geometric morphometrics revealed, contrary to the lack of divergence in wing size, significant wing shape variation throughout the year. In addition, temporal changes in the frequencies of the abdominal patterns observed are likely to relate to the biology of the species and ecological factors in the locality. Hence, the present study expands our knowledge of the genetic diversity and phenotypic plasticity of E. tenax. The quantification of such variability represents a step towards the evaluation of the adaptive potential of this species of medical and epidemiological importance. References Adams, D.C., Rohlf, J.F. & Slice, D.E. (2004) Geometric morphometrics: ten years of progress following the ‘Revolution’. Italian Journal of Zoology, 71, 5–16. 10.1080/11250000409356545 Web of Science®Google Scholar Aguilera, A., Cid, A., Regueiro, B.J., Prieto, J.M. & Noya, M. (1999) Intestinal myiasis caused by Eristalis tenax. Journal of Clinical Microbiology, 37, 3082. CASPubMedWeb of Science®Google Scholar Altincicek, B. & Vilcinskas, A. (2007) Analysis of the immune-inducible transcriptome from microbial stress resistant, rat-tailed maggots of the drone fly Eristalis tenax. BMC Genomics, 8, 326. 10.1186/1471-2164-8-326 CASPubMedWeb of Science®Google Scholar Ayala, F., Tracey, M., Barr, L., McDonald, J. & Perez-Salas, S. (1974) Genetic variation in natural populations of five Drosophila species and the hypothesis of the selective neutrality of protein polymorphisms. Genetics, 77, 343–384. PubMedWeb of Science®Google Scholar Ayele, W.Y., Macháčková, M. & Pavlík, I. (2001) The transmission and impact of paratuberculosis infection in domestic and wild ruminants. Veterinarni Medicina, 46, 205–224. 10.17221/7878-VETMED Web of Science®Google Scholar Ayele, W.Y., Bartos, M., Svastova, P. & Pavlik, I. (2004) Distribution of Mycobacterium avium subsp. paratuberculosis in organs of naturally infected bull-calves and breeding bulls. Veterinary Microbiology, 103, 209–217. 10.1016/j.vetmic.2004.07.011 CASPubMedWeb of Science®Google Scholar Birdsall, K., Zimmerman, E., Teeter, K. & Gibson, G. (2000) Genetic variation for the positioning of wing veins in Drosophila melanogaster. Evolution and Development, 2, 16–24. 10.1046/j.1525-142x.2000.00034.x CASPubMedWeb of Science®Google Scholar Bitner-Mathé, B.C. & Klaczko, L.B. (1999) Heritability, phenotypic and genetic correlations of size and shape of Drosophila mediopunctata wings. Heredity, 83, 688–696. 10.1046/j.1365-2540.1999.00606.x PubMedWeb of Science®Google Scholar Bonduriansky, R. (2006) Convergent evolution of sexual dimorphism in Diptera. Journal of Morphology, 267, 602–611. 10.1002/jmor.10426 CASPubMedWeb of Science®Google Scholar Bookstein, F.L. (1991) Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge, NY. Google Scholar Collett, T.S. & Land, M.F. (1975) Visual spatial memory in a hoverfly. Journal of Comparative Physiology, 100, 59–84. 10.1007/BF00623930 Web of Science®Google Scholar Fischer, O.A. (1999) The importance of Diptera for transmission, spreading and survival of agents of some bacterial and fungal diseases in humans and animals. Veterinari Medicina, 44, 133–160. [In Czech.] Web of Science®Google Scholar Fischer, O.A., Mátlová, L., Dvroská, L. et al. (2001) Diptera as vectors of mycobacterial infections in cattle and pigs. Medical and Veterinary Entomology, 15, 208–211. 10.1046/j.1365-2915.2001.00292.x CASPubMedWeb of Science®Google Scholar Fischer, O.A., Matlova, L., Dvorska, L. et al. (2005) Potential risk of Mycobacterium avium subspecies paratuberculosis spread by syrphid flies in infected cattle farms. Medical and Veterinary Entomology, 19, 360–366. 10.1111/j.1365-2915.2005.00585.x CASPubMedWeb of Science®Google Scholar Fischer, O.A., Matlova, L., Dvorska, L., Švastova, P., Bartoš, M., Weston, R.T. & Pavlik, I. (2006) Various stages in the lifecycle of syrphid flies (Eristalis tenax; Diptera: Syrphidae) as potential mechanical vectors of pathogens causing mycobacterial infections in pig herds. Folia Microbiologica, 51, 147–153. 10.1007/BF02932171 CASPubMedWeb of Science®Google Scholar Fraizer, M.R., Harrison, J.F., Kirkton, S.D. & Roberts, S.P. (2008) Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology. Journal of Experimental Biology, 211, 2116–2122. 10.1242/jeb.019422 PubMedWeb of Science®Google Scholar Frankham, R. (2005) Genetics and extinction. Biological Conservation, 126, 131–140. 10.1016/j.biocon.2005.05.002 CASWeb of Science®Google Scholar Frankham, R., Ballou, J.D. & Briscoe, D.A. (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge. Google Scholar Garcia-Zapata, M.T., de Souza Júnior, E.S., Fernandes, F.F. & Santos, S.F.O. (2005) Human pseudomyiasis caused by Eristalis tenax (Linnaeus) (Diptera: Syrphidae) in Goiás. Revista da Sociedade Brasileira de Medicina Tropical, 38, 185–187. 10.1590/S0037-86822005000200012 PubMedWeb of Science®Google Scholar Ghosh, K., Mukhopadhyay, J., Guzman, H., Tesh, R. & Munstermann, L. (1999) Interspecific hybridization and genetic variability of Phlebotomus sandflies. Medical and Veterinary Entomology, 13, 78–88. 10.1046/j.1365-2915.1999.00140.x CASPubMedWeb of Science®Google Scholar Gilbert, F.S. (1985) Size and shape variation in Syrphus ribesii L. (Diptera, Syrphidae). Proceedings of the Royal Society of London B: Biological Sciences, 224, 107–114. 10.1098/rspb.1985.0024 Web of Science®Google Scholar Gilbert, F.S. (1986) Hoverflies. Cambridge University Press, Cambridge. Google Scholar Gotthard, K. & Nylin, S. (1995) Adaptive plasticity and plasticity as an adaptation: a selective review of plasticity in animal morphology and life history. Oikos, 74, 3–17. CASGoogle Scholar Hall, M.C. (1918) A note regarding myiasis, especially that due to syrphid larvae. Archives of Internal Medicine, 21, 309–312. 10.1001/archinte.1918.00020010001001 Google Scholar Heal, J.R. (1979) Colour patterns of syrphidae: II. Genetic variation in the drone fly Eistalis tenax. Heredity, 42, 223–236. 10.1038/hdy.1979.24 Web of Science®Google Scholar Heal, J.R. (1981) Colour patterns of Syrphidae: III. Sexual dimorphism in Eristalis arbustorum. Ecological Entomology, 6, 119–127. 10.1111/j.1365-2311.1981.tb00600.x Web of Science®Google Scholar Heal, J.R. (1982) Colour patterns of Syrphidae: IV. Mimicry and variation in natural populations of Eristalis tenax. Heredity, 49, 95–109. 10.1038/hdy.1982.68 Web of Science®Google Scholar Heal, J.R. (1989) Variation and seasonal changes in hoverfly species: interactions between temperature, age and genotype. Biological Journal of the Linnean Society, 36, 251–269. 10.1111/j.1095-8312.1989.tb00493.x Web of Science®Google Scholar Holloway, G.J. (1993) Phenotypic variation in colour pattern and seasonal plasticity in Eristalis hoverflies (Diptera: Syrphidae). Ecological Entomology, 18, 209–217. 10.1111/j.1365-2311.1993.tb01092.x Web of Science®Google Scholar Holloway, G.J., Mariott, C.G. & Crocker, H.J. (1997) Phenotypic plasticity in hoverflies: the relationship between pattern and season in Episyrphus balteatus and other Syrphidae. Ecological Entomology, 22, 425–432. 10.1046/j.1365-2311.1997.00096.x Web of Science®Google Scholar Hurkmans, W. (1993) A monograph of Merodon (Diptera: Syrphidae). Part 1. Tijdschrift voor Entomologie, 136, 147–234. Google Scholar Isaac, J.L. (2005) Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal Review, 35, 101–115. 10.1111/j.1365-2907.2005.00045.x Web of Science®Google Scholar James, M.T. & Harwood, R.F. (1969) Myiasis. Herm's Medical Entomology, 6th edn (ed. by M. T. James & R. F. Harwood), pp. 278–298. Macmillan Publishing, London. Google Scholar Johansson, F., Södrequist, M. & Bokma, F. (2009) Insect wing shape evolution: independent effect of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society, 97, 362–372. 10.1111/j.1095-8312.2009.01211.x Web of Science®Google Scholar Kendall, D.A. & Stradling, D.J. (1972) Some observations on the overwintering of the dronefly, Eristalis tenax (L.) (Syrphidae). Entomologist, 105, 229–230. Google Scholar Kölliker-Ott, U.M., Blows, M.W. & Hoffmann, A.A. (2003) Are wing size, wing shape and asymmetry related to field fitness to Trichogramma egg parasitoids? Oikos, 100, 563–573. 10.1034/j.1600-0706.2003.12063.x Web of Science®Google Scholar Korzets, Z., Bernheim, J., Lengy, J. & Gold, D. (1993) Human urogenital myiasis due to Eristalis larva: unusual case of ureteric obstruction. Nephrology Dialysis Transplantation, 8, 874–876. CASPubMedWeb of Science®Google Scholar Kun, M., Kreiter, A. & Semenas, L. (1998) Gastrointestinal human myiasis for Eristalis tenax. Revista de Saude Publica, 32, 367–369. 10.1590/S0034-89101998000400009 CASPubMedWeb of Science®Google Scholar Ludoški, J., Milankov, V. & Vujić, A. (2002) Genetic diversity and differentiation between montane populations of Cheilosia urbana (Diptera: Syrphidae). International Journal of Dipterological Research, 13, 135–141. Google Scholar Ludoški, J., Milankov, V. & Vujić, A. (2004) Low genetic differentiation among conspecific populations of Melanogaster nuda (Diptera, Syrphidae). International Journal of Dipterological Research, 15, 228–235. Google Scholar Ludoški, J., Francuski, L., Vujić, A. & Milankov, V. (2008) The Cheilosia canicularis group (Diptera: Syrphidae): species delimitation and evolutionary relationships based on wing geometric morphometrics. Zootaxa, 1825, 40–50. Google Scholar Lyra, M.L., Hatadani, L.M., de Azeredo-Espin, A.M.L. & Klaczko, L.B. (2010) Wing morphometry as a tool for correct identification of primary and secondary New World screwworm fly. Bulletin of Entomological Research, 100, 19–26. 10.1017/S0007485309006762 CASPubMedWeb of Science®Google Scholar Machackova, M., Svastova, P., Lamka, J. et al. (2004) Paratuberulosis in farmed and free-living wild ruminants in the Czech Republic (1999–2001). Veterinary Microbiology, 101, 225–234. 10.1016/j.vetmic.2004.04.001 CASPubMedWeb of Science®Google Scholar Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. & Slice, D.E. (1996) Advances in Morphometrics. Plenum Press, New York, NY. 10.1007/978-1-4757-9083-2 Google Scholar Marriot, C.G. & Holloway, G.J. (1998) Colour pattern plasticity in the hoverfly, Episyrphus balteatus: the critical immature stage and reaction norm on developmental temperature. Journal of Insect Physiology, 44, 113–119. 10.1016/S0022-1910(97)00097-8 PubMedWeb of Science®Google Scholar Matlova, L., Dvorska, L., Bartrl., J., Bartos, M., Ayele, W.Y., Alexa, M. & Pavlik, I. (2003) Mycobacteria isolated from the environment of pig farms in the Czech Republic during the years 1996 to 2002. Veterinarni Medicina, 48, 343–357. Web of Science®Google Scholar Matta, B.P. & Bitner-Mathé, B.C. (2004) Genetic architecture of wing morphology in Drosophila simulans and an analysis of temperature effects on genetic parameter estimates. Heredity, 93, 330–341. 10.1038/sj.hdy.6800508 CASPubMedWeb of Science®Google Scholar McKechnie, S.W., Blacket, M.J., Song, S.V. et al. (2010) A clinically varying promoter polymorphism associated with adaptive variation in wing size in Drosophila. Molecular Ecology, 19, 775–784. 10.1111/j.1365-294X.2009.04509.x CASPubMedWeb of Science®Google Scholar Milankov, V., Vujić, A. & Ludoški, J. (2001) Genetic divergence among cryptic taxa of Merodon avidus (Rossi, 1790) (Diptera: Syrphidae). International Journal of Dipterological Research, 12, 15–24. Google Scholar Milankov, V., Stamenković, J., Vujić, A. & Šimić, S. (2002) Geographic variation of Cheilosia vernalis (Fallén, 1817) (Diptera: Syrphidae). Acta Zoologica Academiae Scientiarum Hungaricae, 48, 255–267. Web of Science®Google Scholar Milankov, V., Stamenković, J., Ludoški, J., Ståhls, G. & Vujić, A. (2005) Diagnostic molecular markers and the genetic relationships among three species of the Cheilosia canicularis group (Diptera: Syrphidae). European Journal of Entomology, 102, 125–131. 10.14411/eje.2005.020 CASWeb of Science®Google Scholar Milankov, V., Ståhls, G. & Vujić, A. (2008a) Molecular diversity of populations of the Merodon ruficornis group (Diptera, Syrphidae) on the Balkan Peninsula. Journal of Zoological Systematics and Evolutionary Research, 46, 143–152. 10.1111/j.1439-0469.2007.00448.x Web of Science®Google Scholar Milankov, V., Ståhls, G., Stamenković, J. & Vujić, A. (2008b) Genetic diversity of populations of Merodon aureus and M. cinereus species complexes (Diptera, Syrphidae): integrative taxonomy and implications for conservation priorities on the Balkan Peninsula. Conservation Genetics, 9, 1125–1137. 10.1007/s10592-007-9426-8 Web of Science®Google Scholar Milankov, V., Francuski, L., Ludoški, J., Ståhls, G. & Vujić, A. (2010) Estimating genetic and phenotypic diversity in a northern hoverfly reveals lack of heterozygosity correlated with significant fluctuating asymmetry of wing traits. Journal of Insect Conservation, 14, 77–88. 10.1007/s10841-009-9226-1 Web of Science®Google Scholar Mumcuoglu, I., Akarsu, G.A., Balaban, N. & Keles, I. (2005) Eristalis tenax as a cause of urinary myiasis. Scandinavian Journal of Infectious Diseases, 37, 942–943. 10.1080/00365540510043275 CASPubMedWeb of Science®Google Scholar Munstermann, L.E. (1979) Isozymes of Aedes aegypti: phenotypes, linkage, and use of genetic analysis of sympatric population in East Africa. PhD Thesis. University of Notre Dame, Notre Dame, IN. Google Scholar Munstermann, L.E. (1994) Unexpected genetic consequences of colonization and inbreeding: allozyme tracking in Culicidae (Diptera). Annals of the Entomological Society of America, 87, 157–164. 10.1093/aesa/87.2.157 Web of Science®Google Scholar Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590. 10.1371/journal.pone.0000286 CASPubMedWeb of Science®Google Scholar Nespolo, R.F., Roff, D.A. & Fairbairn, D.J. (2008) Energetic trade-off between maintenance costs and flight capacity in the sand cricket (Gryllus firmus). Functional Ecology, 22, 624–631. 10.1111/j.1365-2435.2008.01394.x Web of Science®Google Scholar Nevo, E. (1998) Molecular evolution and ecological stress at global, regional and local scales: the Israeli perspective. Journal of Experimental Zoology, 282, 95–119. 10.1002/(SICI)1097-010X(199809/10)282:1/2 3.0.CO;2-F CASWeb of Science®Google Scholar Nordström, K., Barnett, P.D., de Miguel, I.M.M., Brinkworth, R.S.A. & O’Carroll, D.C. (2008) Sexual dimorphism in the hoverfly motion vision pathway. Current Biology, 18, 661–667. 10.1016/j.cub.2008.03.061 CASPubMedWeb of Science®Google Scholar Nylin, S. & Gotthard, K. (1998) Plasticity in life-history traits. Annual Review of Entomology, 43, 63–83. 10.1146/annurev.ento.43.1.63 CASPubMedWeb of Science®Google Scholar Ottenheim, M.M. & Volmer, A.D. (1999) Wing length plasticity in Eristalis arbustorum (Diptera: Syrphidae). Netherlands Journal of Zoology, 49, 15–27. 10.1163/156854299X00029 Web of Science®Google Scholar Ottenheim, M.M., Volmer, A.D. & Holloway, G.J. (1996) The genetics of phenotypic plasticity in adult abdominal colour pattern of Eristalis arbustorum (Diptera: Syrphidae). Heredity, 77, 493–499. 10.1038/hdy.1996.176 Web of Science®Google Scholar Ottenheim, M.M., Hensler, A. & Brakefield, P.M. (1998) Geographic variation in plasticity in Eristalis arbustorum. Biological Journal of the Linnean Society, 65, 215–229. 10.1111/j.1095-8312.1998.tb00356.x Web of Science®Google Scholar Ottenheim, M.M., Wertheim, G., Holloway, G.J. & Brakefield, P.M. (1999) Survival of colour-polymorphic Eristalis arbustorum hoverflies in semi-field conditions. Functional Ecology, 13, 72–77. 10.1046/j.1365-2435.1999.00284.x Web of Science®Google Scholar Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J. & Britton-Davidian, J. (1988) Practical Isozyme Genetics. Ellis Horwood, Chichester. Google Scholar Rohlf, F.J. (2004) tpsDig—Thin Plate Spline Digitizer, Version 1.40. State University of New York at Stony Brook, New York, NY. Google Scholar Rohlf, F.J. (2005) tpsRegr—Thin Plate Spline Shape Regression, Version 1.31. State University of New York at Stony Brook, New York, NY. Google Scholar Rohlf, F.J. (2006) tpsRelw—Thin Plate Spline Relative Warp, Version 1.44. State University of New York at Stony Brook, New York, NY. Google Scholar Rohlf, F.J. & Marcus, L.F. (1993) A revolution in morphometrics. Trends in Ecology and Evolution, 8, 129–132. 10.1016/0169-5347(93)90024-J PubMedWeb of Science®Google Scholar Rohlf, F.J. & Slice, D. (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59. 10.2307/2992207 Web of Science®Google Scholar Rohlf, F.J., Loy, A. & Corti, M. (1996) Morphometric analysis of Old World talpidae (Mammalia, Insectivora) using partial-warp scores. Systematic Biology, 45, 344–362. 10.1093/sysbio/45.3.344 Web of Science®Google Scholar Rotheray, G. (1993) Colour guide to hoverfly larvae. Dipterists Digest, 9, 1–156. Google Scholar Santos, M., Iriarte, P.F., Céspedes, W., Balayà, J., Fontdevila, A. & Serra, L. (2004) Swift laboratory thermal evolution of wing shape (but not size) in Drosophila subobscura and its relationship with chromosomal inversion polymorphism. Journal of Evolutionary Biology, 17, 841–855. 10.1111/j.1420-9101.2004.00721.x CASPubMedWeb of Science®Google Scholar Schachter-Broide, J., Gürtler, R.E., Kitron, U. & Dujardin, J.-P. (2009) Temporal variation of wing size and shape of Triatoma infestans (Hemiptera: Reduviidae) populations from northwestern Argentina using geometric morphometry. Journal of Medical Entomology, 46, 994–1000. 10.1603/033.046.0504 PubMedWeb of Science®Google Scholar Sommagio, D. (1999) Syrphidae: can they be used as environmental bioindicators? Agriculture, Ecosystems and Environment, 74, 343–356. 10.1016/S0167-8809(99)00042-0 Web of Science®Google Scholar Speight, M.C.D. (2008) Species accounts of European Syrphidae (Diptera). Syrph the Net, the Database of European Syrphidae (ed. by M. C. D. Speight, E. Castella, J.-P. Sarthou & C. Monteil), p. 262. Syrph the Net Publications, Dublin. Google Scholar Stearns, S.C. (1989) The evolutionary significance of phenotypic plasticity. BioScience, 39, 436–445. 10.2307/1311135 Web of Science®Google Scholar Stillwell, R.C., Blanckenhorn, T.T., Davidowitz, G. & Fox, C.W. (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annual Review of Entomology, 55, 227–245. 10.1146/annurev-ento-112408-085500 CASPubMedWeb of Science®Google Scholar Straw, A.D., Warrant, E.J. & O’Carroll, D. (2006) A ‘bright zone’ in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity. Journal of Experimental Biology, 209, 4339–4354. 10.1242/jeb.02517 PubMedWeb of Science®Google Scholar Sun, M. & Du, G. (2003) Lift and power requirements of hovering insect flight. Acta Mehanica Sinica, 19, 458–469. 10.1007/BF02484580 Web of Science®Google Scholar Swofford, D.L. & Selander, R.B. (1989) biosys-2: A Computer Program for the Analysis of Allelic Variation in Genetics. University of Illinois at Urbana-Champaign, Urbana, IL. Web of Science®Google Scholar Taylor, G.K. (2001) Mechanics and aerodynamics of insect flight control. Biological Reviews, 76, 449–471. 10.1017/S1464793101005759 CASPubMedWeb of Science®Google Scholar Teder, T. & Tammaru, T. (2005) Sexual size dimorphism within species increases with body size in insects. Oikos, 108, 321–334. 10.1111/j.0030-1299.2005.13609.x Web of Science®Google Scholar Tretiak, V.R. & Sirenko, A.G. (2007) Comparative phenetyc analysis of dronefly Eristalis tenax L. populations in Ivano-Francivsk region. Odessa National University Herald, 12, 184–190 (in Ukrainian). Google Scholar Wahlund, S. (1928) Composition of populations from the perspective of the theory of heredity. Hereditas, 11, 65–105 (in German). 10.1111/j.1601-5223.1928.tb02483.x Web of Science®Google Scholar Wellington, W.G. & Fitzpatrick, S.M. (1981) Territoriality in the drone fly, Eristalis tenax (Diptera: Syrphidae). The Canadian Entomologist, 113, 695–704. 10.4039/Ent113695-8 Web of Science®Google Scholar Whish-Wilson, P.B. (2000) A possible case of intestinal myiasis due to Eristalis tenax. Medical Journal of Australia, 173, 652. CASPubMedWeb of Science®Google Scholar Citing Literature Volume25, Issue2June 2011Pages 135-147 ReferencesRelatedInformation
Referência(s)