Electronic effect of polymeric environments on metalloporphyrins
2000; Wiley; Volume: 39; Issue: 2 Linguagem: Inglês
10.1002/1099-0518(20010115)39
ISSN1099-0518
Autores Tópico(s)Electrochemical Analysis and Applications
ResumoJournal of Polymer Science Part A: Polymer ChemistryVolume 39, Issue 2 p. 326-334 Article Electronic effect of polymeric environments on metalloporphyrins Mikki V. Vinodu, Mikki V. Vinodu School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560Search for more papers by this authorM. Padmanabhan, Corresponding Author M. Padmanabhan [email protected] School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560Search for more papers by this author Mikki V. Vinodu, Mikki V. Vinodu School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560Search for more papers by this authorM. Padmanabhan, Corresponding Author M. Padmanabhan [email protected] School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560Search for more papers by this author First published: 12 December 2000 https://doi.org/10.1002/1099-0518(20010115)39:2 3.0.CO;2-4Citations: 17Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Electronic modulations brought about on ionic metalloporphyrins by various polymeric environments were investigated in detail with spectral analysis. The porphyrins employed were metalloderivatives of anionic p-sulfonated tetraphenylporphyrins [MTPPS; M = Cu(II), Zn(II), Ag(II), and Cd(II)]. The polymer system chosen involved poly(4-vinylpyridine) (PVP), crosslinked and linear polystyrenes partially chloromethylated and quaternized (PS and PS′), and polyethylene glycol (PEG). These were expected to interact with MTPPS through a coordinate bond on its central metal atom (PVP), through Coulombic attraction (PS and PS′), or through ion–dipolar interaction (PEG). Significant changes in the electronic spectra (redshifts in both B and Q bands) were seen in polymer-incorporated MTPPS in comparison with free MTPPS. For a given metalloporphyrin, the order of the spectral shifts was always MTPPS < PEG–MTPPS < PVP–MTPPS < PS–MTPPS < PS′–MTPPS. Furthermore, for a given polymer matrix, the extent of spectral variation was metal-dependent: Cd > Zn > Ag > Cu. This is explained in terms of the molecular distortions and associated changes in the metalloporphyrin orbital overlap and the charge delocalization from the peripheral substituents or coordinating ligand functions to the porphyrin π framework. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 326–334, 2001 REFERENCES AND NOTES 1 Collman, J. P. Inorg Chem 1997, 36, 5145–5155. 10.1021/ic971037w CASWeb of Science®Google Scholar 2 Sherrington, D. C. Pure Appl Chem 1988, 60, 401–414. 10.1351/pac198860030401 CASWeb of Science®Google Scholar 3 Leanord, D. R.; Smith, J. R. L. J Chem Soc Perkin Trans 2 1991, 25–30. 10.1039/p29910000025 Web of Science®Google Scholar 4 Mansuy, D. Coord Chem Rev 1993, 125, 129–142. 10.1016/0010-8545(93)85013-T CASWeb of Science®Google Scholar 5 Mao, L. Y.; Zhu, M.; Huang, X. M.; Shen, H. X.; Li, R. Chem J Chin Univ 1997, 18, 1611–1615. CASWeb of Science®Google Scholar 6 Saito, Y.; Mifume, M.; Nakashima, S.; Odo, J.; Tanaka, Y.; Chikuma, M.; Tanaka, H. Chem Pharm Bull 1986, 34, 5016–5019. CASWeb of Science®Google Scholar 7 Labat, G.; Meunier, B. J Org Chem 1989, 54, 5008–5011. 10.1021/jo00282a011 CASWeb of Science®Google Scholar 8 Battioni, P.; Lallier, J. P.; Barloy, L.; Mansuy, D. J Chem Soc Chem Commun 1989, 1149–1151. 10.1039/C39890001149 CASWeb of Science®Google Scholar 9 Meunier, B. Chem Rev 1992, 92, 1411–1456. 10.1021/cr00014a008 CASWeb of Science®Google Scholar 10 Bedioui, F.; Devynck, J.; Bied-Charreton, C. J Mol Catal A 1996, 113, 3–11. 10.1016/S1381-1169(96)00028-3 CASWeb of Science®Google Scholar 11 Bell, S. E. J.; Devenney, M. D.; Grimshaw, J.; Hara, S.; Rice, J. H.; Trochagrimshaw, J. J Chem Soc Faraday Trans 1998, 94, 2955–2960. 10.1039/a805234d CASWeb of Science®Google Scholar 12 Wang, R. M.; Li, S. B.; Wang, Y. P.; He, Y. F.; Lei, Z. Q. J Appl Polym Sci 1998, 67, 2027–2034. 10.1002/(SICI)1097-4628(19980321)67:12 3.0.CO;2-O CASWeb of Science®Google Scholar 13 Zhu, M.; Huang, X. M.; Shen, H. X. J Inclusion Phenom Macrocycl Chem 1999, 33, 243–250. 10.1023/A:1008017015765 CASWeb of Science®Google Scholar 14 Bedioui, F.; Devynck, J.; Bied-Charreton, C. Acc Chem Res 1995, 28, 30–36. 10.1021/ar00049a005 CASWeb of Science®Google Scholar 15 Wohrle, D.; Gitzel, J.; Krawczyk, G.; Tsuchida, E.; Ohno, H.; Okura, I.; Nishisaka, T. J Macromol Sci Chem 1988, 25, 1227–1254. 10.1080/00222338808053418 Web of Science®Google Scholar 16 Smith, J. R. L.; Lower, R. J. J Chem Soc Perkin Trans 2 1992, 2187–2196. 10.1039/P29920002187 Web of Science®Google Scholar 17 Kimura, M.; Nishigaki, T.; Koyama, T.; Hanabusa, K.; Shirai, H. Macromol Chem Phys 1994, 195, 3499–3508. 10.1002/macp.1994.021951018 CASWeb of Science®Google Scholar 18 Hassanein, M.; Selim, A.; El-Hamshary, H. Macromol Chem Phys 1994, 195, 3845–3854. 10.1002/macp.1994.021951210 CASWeb of Science®Google Scholar 19 Tatsumi, T.; Nakamura, M.; Tominaga, H. Chem Lett 1989, 419–420. 10.1246/cl.1989.419 CASWeb of Science®Google Scholar 20 Taguchi, F.; Abe, T.; Kaneko, M. J Mol Catal A 1999, 140, 41–46. 10.1016/S1381-1169(98)00218-0 CASWeb of Science®Google Scholar 21 DiMarco, G.; Lanza, M. Sens Actuators B 2000, 63, 42–48. 10.1016/S0925-4005(00)00299-9 CASWeb of Science®Google Scholar 22 Vinodu, M. V.; Padmanabhan, M. Proc Indian Acad Sci (Chem Sci) 1998, 110, 461–470. CASWeb of Science®Google Scholar 23 Mathew, T.; Padmanabhan, M. J Appl Polym Sci 1996, 59, 23–29. 10.1002/(SICI)1097-4628(19960103)59:1 3.0.CO;2-O CASWeb of Science®Google Scholar 24 Mathew, T.; Padmanabhan, M. Indian J Chem Sect B 1995, 34, 903–911. Web of Science®Google Scholar 25 Adler, A. D.; Longo, F. R.; Finarlly, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, T. J Org Chem 1967, 32, 476. 10.1021/jo01288a053 CASWeb of Science®Google Scholar 26 Srivastava, T. S.; Tsutsui, M. J Org Chem 1973, 38, 2103. 10.1021/jo00951a036 CASWeb of Science®Google Scholar 27 Stewart, J. M.; Young, J. D. Solid Phase Peptide Synthesis; Pierce Chemical: Rockford, IL, 1984; Vol. 2, p 54. Web of Science®Google Scholar 28 Gouterman, M. In The Porphyrins; D. Dolphin, Ed.; Academic: New York, 1978; Vol. III, Part A, Chapter 1, pp 1–165. Google Scholar 29 Smith, J. R. L.; Lower, R. J. J Chem Soc Perkin Trans 2 1992, 2187–2196. 10.1039/P29920002187 Web of Science®Google Scholar 30 Ojadi, E.; Selzer, R.; Linschitz, H. J Am Chem Soc 1985, 107, 7783–7791. 10.1021/ja00311a105 CASWeb of Science®Google Scholar 31 Antipas, A.; Buchler, J. W.; Gouterman, M.; Smith, P. D. J Am Chem Soc 1978, 100, 3015–3021. 10.1021/ja00478a013 CASWeb of Science®Google Scholar Citing Literature Volume39, Issue215 January 2001Pages 326-334 ReferencesRelatedInformation
Referência(s)