Artigo Revisado por pares

Coinage Metal Halide Clusters: From Two‐Dimensional Ring to Three‐Dimensional Solid‐State‐Like Structures

2006; Wiley; Volume: 7; Issue: 11 Linguagem: Inglês

10.1002/cphc.200600452

ISSN

1439-7641

Autores

Robert Krawczyk, A. Hammerl, Peter Schwerdtfeger,

Tópico(s)

Nanocluster Synthesis and Applications

Resumo

ChemPhysChemVolume 7, Issue 11 p. 2286-2289 Communication Coinage Metal Halide Clusters: From Two-Dimensional Ring to Three-Dimensional Solid-State-Like Structures Robert P. Krawczyk Dr., Robert P. Krawczyk Dr. Centre of Theoretical Chemistry and Physics, Institute of Fundamental Sciences, Massey University, Private Bag 102904, North Shore MSC, Auckland, New Zealand, Fax: (+64) 9-443-9779Search for more papers by this authorAnton Hammerl Dr., Anton Hammerl Dr. Centre of Theoretical Chemistry and Physics, Institute of Fundamental Sciences, Massey University, Private Bag 102904, North Shore MSC, Auckland, New Zealand, Fax: (+64) 9-443-9779Search for more papers by this authorPeter Schwerdtfeger Prof. Dr., Peter Schwerdtfeger Prof. Dr. [email protected] Centre of Theoretical Chemistry and Physics, Institute of Fundamental Sciences, Massey University, Private Bag 102904, North Shore MSC, Auckland, New Zealand, Fax: (+64) 9-443-9779Search for more papers by this author Robert P. Krawczyk Dr., Robert P. Krawczyk Dr. Centre of Theoretical Chemistry and Physics, Institute of Fundamental Sciences, Massey University, Private Bag 102904, North Shore MSC, Auckland, New Zealand, Fax: (+64) 9-443-9779Search for more papers by this authorAnton Hammerl Dr., Anton Hammerl Dr. Centre of Theoretical Chemistry and Physics, Institute of Fundamental Sciences, Massey University, Private Bag 102904, North Shore MSC, Auckland, New Zealand, Fax: (+64) 9-443-9779Search for more papers by this authorPeter Schwerdtfeger Prof. Dr., Peter Schwerdtfeger Prof. Dr. [email protected] Centre of Theoretical Chemistry and Physics, Institute of Fundamental Sciences, Massey University, Private Bag 102904, North Shore MSC, Auckland, New Zealand, Fax: (+64) 9-443-9779Search for more papers by this author First published: 06 November 2006 https://doi.org/10.1002/cphc.200600452Citations: 13Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Transition to the solid state: Quantum chemical calculations show that the change from the 2D ring to the compact 3D bulklike structure (see figure) for the group 11 halides occurs at a cluster size equal to six, (MX)6 (M=Cu, Ag, and Au; X=F, Cl, Br, and I), with the exception of gold where relativistic effects lead to the well-known zig-zag chains for solid gold halides. References 1J. Maddox, Nature 1988, 333, 201. PubMedWeb of Science®Google Scholar 2K. Rosciszewski, B. Paulus, P. Fulde, H. Stoll, Phys. Rev. B 2000, 62, 5482–5488. 10.1103/PhysRevB.62.5482 CASWeb of Science®Google Scholar 3P. Schwerdtfeger, N. Gaston, R. P. Krawczyk, R. Tonner, G. E. Moyano, Phys. Rev. B 2006, 73, 064112–1–19. 10.1103/PhysRevB.73.064112 CASWeb of Science®Google Scholar 4D. J. Wales, J. P. K. Doye, J. Phys. Chem. A 1997, 101, 5111–5116. 10.1021/jp970984n CASWeb of Science®Google Scholar 5T. P. Martin, Phys. Rep. 1983, 95, 167–199. 10.1016/0370-1573(83)90024-8 CASWeb of Science®Google Scholar 6C. Ochsenfeld, R. Ahlrichs, J. Chem. Phys. 1992, 97, 3487–3497. 10.1063/1.462983 CASWeb of Science®Google Scholar 7H. Häkkinen, R. N. Barnett, U. Landmann, Chem. Phys. Lett. 1995, 232, 79–89. 10.1016/0009-2614(94)01327-R Web of Science®Google Scholar 8M.-J. Malliavin, C. Coudray, J. Chem. Phys. 1997, 106, 2323–2330. 10.1063/1.474110 CASWeb of Science®Google Scholar 9P. Amara, J. E. Straub, Phys. Rev. B 1996, 53, 13857–13863. 10.1103/PhysRevB.53.13857 CASWeb of Science®Google Scholar 10T. P. Martin, J. Chem. Phys. 1977, 67, 5207–5212. 10.1063/1.434697 CASWeb of Science®Google Scholar 11A. Aguado, A. Ayuela, J. M. López, J. A. Alonso, Phys. Rev. B 1997, 56, 15353–15360. 10.1103/PhysRevB.56.15353 CASWeb of Science®Google Scholar 12N. G. Phillips, C. W. S. Conover, L. A. Bloomfield, J. Chem. Phys. 1991, 94, 4980–4987. 10.1063/1.460534 CASWeb of Science®Google Scholar 13M. Hargittai, P. Schwerdtfeger, B. Réffy, R. Brown, Chem. Eur. J. 2002, 8, 327–333, and references cited therein. Google Scholar 14P. Schwerdtfeger, R. P. Krawczyk, A. Hammerl, R. Brown, Inorg. Chem. 2004, 43, 6707–6716. 10.1021/ic0492744 CASPubMedWeb of Science®Google Scholar 15T. Söhnel, H. Hermann, P. Schwerdtfeger, Angew. Chem. 2001, 113, 4511–4515; 10.1002/1521-3757(20011203)113:23 3.0.CO;2-# Google ScholarAngew. Chem. Int. Ed. 2001, 40, 4381–4385. 10.1002/1521-3773(20011203)40:23 3.0.CO;2-G PubMedGoogle Scholar 16T. Söhnel, H. Hermann, P. Schwerdtfeger, J. Phys. Chem. B 2005, 109, 526–531. 10.1021/jp046085y CASPubMedWeb of Science®Google Scholar 17M. Kaupp, H. G. von Schnering, Inorg. Chem. 1994, 33, 2555–2564. 10.1021/ic00090a014 CASWeb of Science®Google Scholar 18K. Aurivillius, Acta Crystallogr. 1956, 9, 685–686. 10.1107/S0365110X56001881 CASWeb of Science®Google Scholar 19P. Pyykkö, Angew. Chem. 2004, 116, 4512–4557; 10.1002/ange.200300624 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 4412–4456. 10.1002/anie.200300624 CASPubMedWeb of Science®Google Scholar 20P. Pyykkö, Inorg. Chim. Acta 2005, 358, 4113–4130. 10.1016/j.ica.2005.06.028 CASWeb of Science®Google Scholar 21T. P. Martin, H. Schaber, J. Chem. Phys. 1980, 73, 3541–3546. 10.1063/1.440736 CASWeb of Science®Google Scholar 22S. Gambarotta, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Chem. Soc. Chem. Commun. 1983, 1304–1306. 10.1039/c39830001304 CASWeb of Science®Google Scholar 23P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, P. D. W. Boyd, J. Phys. Chem. 1989, 91, 1762–1774. 10.1063/1.457082 CASWeb of Science®Google Scholar 24H. Schwarz, Angew. Chem. 2003, 115, 4580–4593; 10.1002/ange.200300572 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 4442–4454. 10.1002/anie.200300572 CASPubMedWeb of Science®Google Scholar 25R. J. Puddephat, The Chemistry of Gold, Elsevier, Amsterdam, 1978. Google Scholar 26R. J. Puddephat in Comprehensive Organometallic Chemistry, Vol. 15 (Eds.: ), Pergamon, Oxford, 1982, p. 765. 10.1016/B978-008046518-0.00023-4 Google Scholar 27R. J. Puddephatt in Comprehensive Coordination Chemistry, Vol. 15 (Eds.: ), Pergamon, Oxford, 1987, p. 861. Google Scholar 28C. E. Briant, K. P. Hall, D. M. P. Mingos, J. Organomet. Chem. 1983, 254, C 18-C20. 10.1016/0022-328X(83)85130-4 CASWeb of Science®Google Scholar 29D. M. P. Mingos, Philos. Trans. R. Soc. London Ser. A 1982, 308, 75–83. 10.1098/rsta.1982.0148 CASWeb of Science®Google Scholar 30K. Doll, P. Pyykkö, H. Stoll, J. Chem. Phys. 1998, 109, 2339–2345. 10.1063/1.476801 CASWeb of Science®Google Scholar 31A. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie, de Gruyter, Berlin, 1995. Google Scholar 32Program Gaussian 03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Revision C.02, Gaussian, Inc., Pittsburgh PA, 2003. Google Scholar 33P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270–283. 10.1063/1.448799 CASWeb of Science®Google Scholar 34Y. Gao, S. Bulusu, X. C. Zeng, J. Am. Chem. Soc. 2005, 127, 15680–15681. 10.1021/ja055407o CASPubMedWeb of Science®Google Scholar Citing Literature Volume7, Issue11November 13, 2006Pages 2286-2289 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX