Artigo Revisado por pares

Fluorine uptake into the human tooth from a thin layer of F-releasing material

2007; Elsevier BV; Volume: 260; Issue: 1 Linguagem: Inglês

10.1016/j.nimb.2007.02.024

ISSN

1872-9584

Autores

Hiroko Yamamoto, M. Nomachi, Keisuke Yasuda, Y Iwami, S. Ebisu, Hirokazu Komatsu, Takuro Sakai, Tomihiro Kamiya,

Tópico(s)

Nuclear Physics and Applications

Resumo

Abstract Using the proton induced gamma-ray emission (PIGE) method (TIARA, Japan), we have studied fluorine (F) distribution in the human tooth under various conditions. Here, we report F uptake into the human tooth from a thin layer of F-releasing low viscous resin (FLVR). Crowns of human teeth were horizontally cut and the dentin of the cut surface was first covered with four kinds of FLVR (FL-Bond, Reactmer Bond, Xeno Bond, and Protect Liner F; thickness, 50–150 μm) according to the manufacturers’ instructions. Non-F-releasing and F-releasing filling resins were also hardened, on the cut surfaces of crowns covered with four kinds of FLVR thin layers. The type of the non-F-releasing filling materials used was LITE FIL IIP: G1-A (FL-Bond and LITE FIL IIP), G2-A (Reactmer Bond and LITE FIL IIP), G3-A (Xeno Bond and LITE FIL IIP), and G4-A (Protect Liner F and LITE FIL IIP). The types of F-releasing filling materials used were G1-B (FL-Bond and Beautifil), G2-B (Reactmer Bond and Reactmer Paste), G3-B (Xeno Bond and Xeno CF Paste), and G4-B (Protect Liner F and Teethmate F-1). Treatment and measurements of specimens were the same as previously reported [H. Yamamoto, M. Nomahci, K. Yasuda, Y. Iwami, S. Ebisu, N. Yamamoto, T. Sakai, T. Kamiya, Nucl. Instr. and Meth. B 210 (2003) 388]. F uptake from specimens following one month of application was estimated from 2-D maps. F penetration was observed in all teeth of G1-A–G4-A groups. The maximum values of F concentration in each tooth and F penetration depth were larger for larger F concentrations in FLVR. FLVR was useful for the F uptake into the tooth, and the F distribution near the thin layer of FLVR depended on the materials used. Between G1-A and G1-B or G4-A and G4-B, the F uptake was significantly different. We were able to obtain fundamental data, which were useful for the analysis of F transportation relating to prevention of caries.

Referência(s)